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1 Introduction

A rhotrix is an arrangement of numbers in a rhomboid shape. This is similar to a matrix, which
is an arrangement of numbers in a rectangular form. Rhotrix was first introduced by Ajibade [1],
as an extension of the idea suggested by Atanassov and Shannon [4] in their work titled “matrix
-tertions and matrix-noitrets”. A formal definition of a real rhotrix as presented in the maiden
paper is given below:

Definition 1.1. /1] A real rhotrix set of dimension three, denoted as 1%3(9%) is defined as:

a

Rg(m):{<b c d>:a,b,c,d,e € R}

e

where ¢ = h(R) is called the heart of any rhotrix R belonging to Rs(R) (a set of all real rhotrices

of dimension 3) and *R is the set of real numbers.
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Examples showing extension of this set and analysis are copious in literature. A few are pre-
sented in these references [2, 3, 5-7,10-14, 18, 19]. It has been noted that these heart-oriented
rhotrices are always of odd dimension. Thus, a rhotrix with even dimension is recently being
introduced by Isere [8,9]. The algebra and analysis establishing this new structure as mathe-
matically tractable were all presented in [9]. The heart-based rhotrices are classified as classical
rhotrices, while even-dimensional rhotrices are classified as non-classical rhotrices [8].

Mean while, the addition and multiplication of heart-based rhotrices (h-rhotrices) were first
presented in [1]. Thus, addition and multiplication of two heart-based rhotrices are defined as:

a f a+ f
R+Q:<b h(R) d>+<g h(Q) j>:<b+g h(R) 4+ h(Q) d+j>
e k e+ k

and
ah(Q) + fh(R)
Ro@ = < bh(Q) +gh(R)  WR)MQ)  dh(Q)+ jh(R) > )
eh(Q) + kh(R)
respectively. A generalization of this hearty multiplication is given in [14] and in [6]. A row-
column multiplication of heart-based rhotrices was proposed by Sani [15] as:

af +dg
RoQ:< bf +eg h(R)h(Q) aj+ dk >
bj + ek

A generalization of this row-column multiplication was also later given by Sani [16] as:

t t—

Ry 0 Qn = (aij, ij) © (bij, di) = <Z (aijbis), (Clkdm)> b= (n+1)/2,

ij=1 Lk

where R,, and (),, are n-dimensional rhotrices (with n rows and n columns). These two methods
of multiplication of rhotrices are very popular in literature. In both methods, the heart plays a
significant role as shown above. A lot of work has been done on A-rhotrices. These works are also
well known in literature, such as the conversion of a rhotrix into a coupled matrix by Sani [17].
A generalization of rhotrix was introduced as paraletrix by Aminu and Michael [3]. This concept
shows more flexibility in mathematical arrays of numbers, where the number of rows and columns
need not be the same. It was noted that not every paraletrix has a heart. Consequently, a rhotrix
without a heart was introduced in [8, 9] as heartless rhotrices (hl-rhotrices). Such rhotrices were
found to be even-dimensional. The simplest non-trivial even-dimensional rhotrix is of dimension
two, and it is stated below:

Definition 1.2. A real rhotrix of dimension two is given as

a
A:{<b d>:a,b,d,e € R}.

(&
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It is to be noted that an n-dimensional rhotrix with n being even has its cardinality as |R,,| =
%(n2 +2n) V n € 2N. The multiplication of h-rhotrices, as remarked in [1], can be done in
many ways. This is also true with even-dimensional rhotrices. In this work, we define multipli-
cation of two even-dimensional rhotrices elementwise as follows:

aii bi1 ai1bi
AoB = < a21 a12 > © < b1 b1z > = < ag1b21 ai2bia >
a22 baz a2b22

Moreover, we shall be looking at multiplication of higher even-dimensional rhotrices, the
concept of empty rhotrix and the representation of an even-dimensional rhotrix over a linear
map. The concept of rhotrix linear transformation was first investigated by Mohammed et al [13].
The necessary and sufficient conditions for a rhotrix to be represented by a linear map were
given in [13]. It is to be noted that the rhotrix investigated was an h-rhotrix. These conditions
will be stated in the next section. However, an extension of these conditions will be considered
in this work, and the necessary and sufficient conditions for an even-dimensional rhotrix to be
represented by a linear map will be presented.

2 Preliminaries

Some definitions will be considered in this section that will be useful in achieving the results
anticipated in this work.

Definition 2.1. [13] A rhotrix R of dimension n is given as:

a11

21 C11 12

Rn:<at1 - = — - = a1t>-
Q-1 Ce—1t—1 Ar—1¢

Ay

The element a;;(i,j = 1,2,...,t) and cy(k,l = 1,2,..t — 1) are called the major and minor

entries of R, respectively. This is usually denoted as R,, = (a;j, ).

Definition 2.2. [13] Let R, = (a;j, cu) be an n dimensional rhotrix. Then, a;; is the (i,j)-

entries called the major entries of R,, and cy; is the (k,l)-entries called the minor entries of R,,.

Definition 2.3. [16] A rhotrix R,, = (aij, cxi) of n dimension is a couple of two matrices (a;;)

and (cy) consisting of its major and minor matrices of R,,.

Definition 2.4. [13] Let R,, = (a;j, ci1) be an n dimensional rhotrix. Then, rows and columns of

a;j(cp) will be called the major (minor) rows and columns of R, respectively.
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Definition 2.5. [13] For any odd integer n, a n x n matrix (a;;) is called a filled coupled matrix
ifa;; = 0 for all i, j whose sum © + j is odd. We shall refer to these entries as the null entries of
the filled coupled matrix.

Remark 2.1. (i) R, = (a;;, cu) is a representation of any rhotrix. (ii) Moreover, an even-
dimensional rhotrix can also be represented as R,, = (a;;, i) or simply as R, = (a;,). (iii) a
(n x n) filled coupled matrix has n* entries.

Definition 2.6. For any odd integer n, a (n x n) matrix (a;;) is called a completely filled coupled
matrix if a;; = 0 for all i, 5 whose sum i + j is odd and for all i = j = ”TH The entry corre-

sponding to a;; = 0,i = j = “

= "5~ is a special null-entry called the null entry of the completely

filled coupled matrix.

Definition 2.7. The entries a;; whose sum i+ j is even, except when i = j = ”T“ Vne277+1,

are called the real entries of the completely filled coupled matrix.

Theorem 2.1. [13] Letn € 27t + 1 and F be a field. Then, a linear map T : F™ — F"™ can be
represented by a rhotrix with respect to the standard basis if and only if T is defined as:

T(xbyl)x%y% "'7yt—17ajt) - (al(ajl?x% "'axt)7ﬁl(ylay27 "'7yt—1)7
Oég(l'hl'g, "')xt)752(y17y27 "'ayt—1)7 LERE)

Bt—l(yh 1/27 crey yt71)7 at(xly Ly ey 'rt))

where t = "1 ay, o, ..., aq and By, Ba, ..., Bi—1 are any linear maps on F* and F'™", respec-

tively.
Lemma 2.2. Let [a;;],, be a (n x n) filled coupled matrix, then:

(@) The number of all the real entries is given as

1
ani(nQ—i—l) Vne2Zt+1

(b) The number of all the null entries is given as

1
@n:§(n2—1) Vne2Zt 41

Proof. Since a (n x n) filled coupled matrix has n? entries, then (a) + (b) = n?*. Consider:

1 1
S+ D+ 50" —1) =0’

Then, (a) and (b) are true. O

Remark 2.2. I1,, + 0,, as in Lemma 2.2 is an odd-dimensional rhotrix, i.e., the real entries are

odd.

Lemma 2.3. Let [a;;], be a completely filled coupled matrix, then:
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(@) The number of all the real entries is given as

1
anﬁ(rf—l) Vn €272t +1

(b) The number of all the null entries is given as

1
@nzé(nQ—Fl) Vn €27 +1.

Proof. The proof is similar to the proof of Lemma 2.2 above. ]

Remark 2.3. II,, + (,, as in Lemma 2.3 is an even-dimensional rhotrix, i.e., the real entries are
even.

Theorem 2.4. There is a one-to-one correspondence between the set of all n-dimensional rhotri-
ces over a field F' and the set of all n x n completely filled coupled matrices over F.

Proof. The proof follows from Lemma 2.3 and the fact that any n-dimensional rhotrix is n?
entries. =

Remark 2.4. (i) The set of all real entries (11,,) of the completely filled coupled matrix corre-
sponds to the entries of an even-dimensional rhotrix R,, = (a;j, ci) or simply as R,, = (a;).

(7i) A filled coupled matrix and a completely filled coupled matrix comprise of both real and
null entries.

(2ii) All heart-based rhotrices result in a filled coupled matrix while all even-dimensional rhotri-
ces result in a completely filled coupled matrix.

3 Main Results

This section presents the main results starting with the concept of empty rhotrix, then some
examples of filled and completely filled coupled matrices and multiplication of higher even-
dimensional rhotrices.

3.1 The concept of empty rhotrix

Definition 3.1. A rhotrix that has no entry is an empty rhotrix, e.g., A = ( ).

Lemma 3.1. An empty rhotrix A of n-th dimension contains null-entry of a completely- filled
matrix as its only entry.

Proof. Recall that for an even-dimensional rhotrix |R,,| = $(n*+2n) Vn € 2N. Since n € 2N
implies that 0 € 2N and Ry = ( ). The proof follows. O

Corollary 3.1.1. An empty real rhotrix is even-dimensional.
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Proof. We prove by contradiction. Let ?,, be any n-dimensional real rhotrix. Suppose, n is odd,
then, its cardinality can be represented as

1
|R,| = §(n2 +1) n€2Z" +1.

Since, an empty rhotrix has no entry, its cardinality is zero. That is

1
0=-=

S0 +1)

implies that n = +:. Then, we have a contradiction. Now, suppose that n is even, then
I
|R,| = §(n +2n) n € 2N
implies that n = 0 € 2N. Thus, an empty rhotrix is even-dimensional.

Remark 3.1. N is a set of non-negative integers

3.2 Some examples of filled and completely filled coupled matrices

Example 3.1. A rhotrix of dimension five (Rs) is given by:

Rs = < a3 a13 >

Then its corresponding filled coupled matrix is presented below:

21 Q12

C21 C12

a32 @23

a1

0

a1

0

| 431

0

C11

0

C21

0

a2

0

a2

0

as2

0

C12

0

C22

0

13

0

@23

a33

Example 3.2. A rhotrix of dimension seven (R7) is given by:

Ry

< aq1

21

asi
C31

Q42

C21
a32

C32

Q43

ai1

C11 412
A22  C12
Co2 (23
a3z Co3
C33 Q34
Q44

ais
C13

Q14 >

24

Then its corresponding filled coupled matrix will be presented below:
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ai; 0 a2 0 a3 0 ay
0 ¢1 0 ¢2 0 ¢3 O
a1 0 ax 0 as 0 an
M(R7)=1| 0 ¢ 0 ¢ 0 3 0
azr 0 ax 0 azz 0 azy

0 C31 0 C32 0 C33 0

apn. 0 asz 0 a3 0 au

Example 3.3. A rhotrix of dimension four (Ry) is given by:

a11

21 C11 Q12
Ry = asr €21 C12 Q13

gz Co2 (A23

as3

Then its corresponding completely filled coupled matrix is presented below:

air 0 a2 0 ags
0 C11 0 C12 0

C(Ry)= | axn 0 0% 0 a3

0 C21 0 Co2 0

| az1 0 aszx 0 ass |

Example 3.4. A rhotrix of dimension six (Rg) is given by:

a11
21 Ci11 OG12
a31 Co1 Q22 Ci2 (13
Re = < 41 C31 Qa32 23 C13 Q14 >
Qg2 C32 Q33 C23 A4

Q43 C33 Q34

Q44

Then its corresponding completely filled coupled matrix is:

ai;r 0 a2 0 a3 0 au
0O cecn 0 c2 0 a3 O
azr 0 ax 0 a3y 0 au
C(Rg) = 0 1 0 0 0 3 O
az; 0 azx 0 azx 0 axn
0 ¢33 0 ¢33 0 ¢33 O

apgr 0 agp 0 a3 0 aw

Remark 3.2. A completely filled coupled matrix is obtained from even-dimensional rhotrix, and
contains the null-entry of the completely filled coupled matrix denoted as 0%, while a filled coupled
matrix is obtained from odd-dimensional rhotrices.
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3.3 Multiplication of higher even-dimensional rhotrices

Multiplication of higher even-dimensional rhotrices whether even or odd dimensional can be de-
fined in many ways. In this work, elementwise multiplication method is presented for higher
even-dimensional rhotrices. Examples of rhotrices of dimension four are presented for the pur-
pose of demonstration. Let

ay by
G a3 (4 by b3 by
A—<a5 ag ay a8>, B—<b5 b by bg>
Qg G190 an by b bn
12 bio
then
aiby
azby  asbs asby
AGB= < asbs agbg azb;  agbg >
aghy ayobip aibn
a12b12
Example 3.5. Let
2 3
3 1 4 2 4 1
A:<56 78>,B:<78 95>
9 10 5 6 8 3
3 10

then
203 6
302 104 401 6 4 4
A@B:<5®7 68 709 8®5> <35 48 63 40>
906 108 53 54 80 15
310 30

Generally, a rhotrix 12 of dimension n (n being even) can be written as:

™

T rs T4

ne(-- - - o)

7/‘»'1,24»271,76 /r‘n2+2n74 Tn2+2n72
2 2 2

7ﬁn2+2n
2
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A generalization of the elementwise multiplication of even-dimensional rhotrices is as fol-
lows. Let R,, = (a;) and Q,, = (b;), be two even-dimensional rhotrices, then their multiplication
is as follows

RHQQn = <(lz> © <bj> = <ZCL2> O] <Z b]> = <Z(akbk)>7 t= (n2 +2n)/2, n e 2N,

i=1 k=1

where the product (a;;b;;) is empty whenever ¢ = j = % Vite2Zt+ 1.

4 Linear maps on an even-dimensional rhotrix

The concept of representation by a linear map helps to establish the existence of a linear structure.
In this section, we investigate the representation of an even-dimensional rhotrix over a linear map.

Theorem 4.1. Let n € 2Z" + 1 and F be a field. Then, a linear map 7 : F™ — F" can be
represented by an even-dimensional rhotrix with respect to the standard basis if and only if T is
defined as:

T(1, Y1, T2, Y2, s Y1, Tt) = (1 (T1, Ta, ooy T1), Br(Y1, Y2, 005 Yeo1),
(X1, Ty ooy y)y Bo(Y1, Y2y ooy Y1)y vy
ﬂ%(yl,y% ...,O(y%), Y1) YV t—1€2Z27 +1,
Qe (21,22, .0, 0(@ 1), oy ) VT E 27 +1,..,

51:—1(3/1, Y2, -y Z/t—l)’ Oét($1, T, ..., ft)),

wheret = "2 oy o, ..., a1, ..., 0p and B1, Pa, ..., Be, ..., Bi_1 are any linear maps on F* and
2

27 =

F'=1 respectively.

Proof. Case 1 (whent € 22+ + 1).
Given that

T(T1, Y15 T2, Y2, s Yeo1, Tp) = (w1, T2, o 21), Br(Y1, Y2, - Ye1),
(1, Ty ooy 1), B2(Y1, Y2y ooy Yt—1)y oeny
B%(yl,yg, ...,O(y%), Y1) YV t—1€2Z27 +1,
Qe (21,22, ., 0(@esa), oy ze) YV T E 27 +1,...,
Bi1(y1, Y2, -, Ye1), (1, o, .., 1))

"TJ“Z, 1y Qg ooy QgL o, O and (31, 5o, ...,ﬁ%, ..., B;—1 are any linear maps on F'"* and

where t =
F'=1 respectively.
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Now let us consider the standard basis:

7(e1) = [aq(1,0,...,0),0,...,a4(1,0....,0)]
7(61) = [O,ﬁl(l, 0, Ce ,0), 0, e 7515—1(17 O Ce ,0)]
7(e1) = [aq(1,0,...,0),0, ,a%((). ..,O(x%), .0), . 00(1,0.. .., 0)]
T(et) = [0,51(0, ..,t),(),...,ﬁt_l(()....,0),1]
T(Gt): [Oél<0, ..,t),O,...,Oét(O....,]_)]
Putting the above linear equations into a matrix, we have
[ an 0 Q12 Q-1 0 Q¢ |
0 611 0 c 0 Bltfl 0
04%1 0 04%2 0 Oé%t
0 fBien O 0 B
€771 0 7] Qg1 0 Olgt

a1 12 Q-1 0 g
0 511 0 0 5“71 @]

m(T) = |y 0 Qg 0 Q1
0 Br—11 0 cee 0 Br—1t-1 0

6751 0 Q2 Qg1 0 Qg |

The result is a completely filled coupled matrix from which we have the even-dimensional
rhotrix representation.
Conversely, suppose that 7 : F™ +— F"™ has an even-dimensional rhotrix representation

(@i, Brr) in the standard basis. Then, the corresponding matrix representation of 7 is the com-
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pletely filled coupled matrix given above. From this, we obtain the linear system below:

7(e1) = [a1(1,0,...,0),0,...,4(1,0....,0)]
T(e1) = [0,51(1,0,...,0),0,...,51(1,0....,0)]

Case 1 (whent —1€ 22" 4+ 1).
The proof follows similarly. ]

Remark 4.1. The above theorem is seeing our even-dimensional rhotrix as a completely filled
couple matrix.

Example 4.1. Consider the linear mapping T : R — R defined by T(x,y, z) = (ax +dz,0, bx +
ez). Find the hl-rhotrix represented by the linear transformation(linear map) T with respect to
the standard basis.

Solution:
7(1,0,0) =(a,0,b)
7(0,1,0) =(0,0,0)
7(0,0,1) =(d,0,¢)

Then, putting this into matrix gives

a 0
0 0
d 0

Thus, the matrix of representation is the transpose of the above matrix

b
0
e

T

d
0
e

oo o
Il
>~ o 9
o o o

R(T):<b d>

Example 4.2. Consider the linear mapping 7 : R — R defined by 7(a,b,c,d,e) = (a + 2¢ —
5e,3b+ 6d,4a + 10e,8b — 11d, 9a + 12¢ + 13e). Find the even-dimensional rhotrix represented
by the linear transformation(linear map) T with respect to the standard basis.
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Solution:

7(1,0,0,0,0) =(1,0,4,0,9)
7(0,1,0,0,0) =(0, 3,0,8,0)
7(0,0,1,0,0) =(2,0,0,0,12)
7(0,0,0,1,0) =(0,6,0,—11,0)
7(0,0,0,0,1) =(—5,0,10,0, 13)
Thus, the matrix of representation is given below:
104 0 9] [1o0 2 0 -5
0 3 0 8 0 03 0 6 0
m(t)=12 0 0 0 12| =14 0 0 0 10
0 6 0 =11 O 08 0 —11 O
-5 0 10 0 13] 9 0 12 0 13}
which is a completely filled coupled matrix. Then the even-dimensional rhotrix by 7 is
1
4 3 2
R(1) = < 9 8 6 —5 >
12 —11 10
13

This is an even-dimensional rhotrix of dimension 4.

Example 4.3. Consider the linear mapping 7 : R — R defined by 7(a,b,c,d, e, f,g) = (3a +
2c—4g—2e,5b+4d+3f, 5a—"Tc+3e—g,8b—5f, Ta+12c—3e+5¢g, —4b+2d+ f, a+14c—Te+10g).
Find the even-dimensional rhotrix represented by the linear transformation(linear map) T with
respect to the standard basis.

7(0,0,0,0,1,0,0
7(0,0,0,0,1,0,0)

0,3,0,—5,0,1,0)
~1,0,5,0,10)

Solution: 7(1,0,0,0,0,0,0) =(3,0,5,0,7,0,1)
7(0,1,0,0,0,0,0) =(0,5,0,8,0, —4,0)
7(0,0,1,0,0,0,0) =(2,0,—7,0,12,0, 14)
7(0,0,0,1,0,0,0) (0400020)
7(0,0,0,0,1,0,0) =(=2,0,3,0, 3,0, —7)
( ) =(0,
=(—4

Thus, the matrix of representation is given below:

305 0 7 0 1] 30 2 0 -2 0 -4
05 0 8 0 -4 0 05 0 4 0 3 0
2 0 -7 0 12 0 14 5 0 -7 0 3 0 -1
mm)=10 4 0 0 0 2 0| =/0 8 0 0 0 -5 0
20 3 0 -3 0 -7 7 0 120 -3 0 5
0 3 0 -5 0 1 0 0 -4 0 2 0 1 0
-4 0 -1 0 5 0 10 1 0 14 0 -7 0 10]
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which is a completely filled coupled matrix. Then the even-dimensional rhotrix by 7 is

3
5 5 2

78 -7 4 -2
R(T):<1 —4 12 3 3 —4>
4 2 -3 -5 -1

-7 1 5
10

This is an even-dimensional rhotrix of dimension 6.

5 Conclusion

A strenuous effort was made to represent an even-dimensional rhotrix over a linear map. This
representation showed that an even-dimensional rhotrix is a linear structure, and that it is a special
type of rhotrix. All even-dimensional rhotrices are rhotrices except for the converse. Representing
a rhotrix this way enables us to have by definition, even-dimensional rhotrices. Therefore, this
work is an expansion and a contribution to rhotrix algebra.
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