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1 Introduction

A rhotrix is an arrangement of numbers in a rhomboid shape. This is similar to a matrix, which
is an arrangement of numbers in a rectangular form. Rhotrix was first introduced by Ajibade [1],
as an extension of the idea suggested by Atanassov and Shannon [4] in their work titled “matrix
-tertions and matrix-noitrets”. A formal definition of a real rhotrix as presented in the maiden
paper is given below:

Definition 1.1. [1] A real rhotrix set of dimension three, denoted as R̂3(R) is defined as:

R̂3(R) = {

〈 a

b c d

e

〉
: a, b, c, d, e ∈ R}

where c = h(R) is called the heart of any rhotrixR belonging to R̂3(R) (a set of all real rhotrices
of dimension 3) and R is the set of real numbers.
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Examples showing extension of this set and analysis are copious in literature. A few are pre-
sented in these references [2, 3, 5–7, 10–14, 18, 19]. It has been noted that these heart-oriented
rhotrices are always of odd dimension. Thus, a rhotrix with even dimension is recently being
introduced by Isere [8, 9]. The algebra and analysis establishing this new structure as mathe-
matically tractable were all presented in [9]. The heart-based rhotrices are classified as classical
rhotrices, while even-dimensional rhotrices are classified as non-classical rhotrices [8].

Mean while, the addition and multiplication of heart-based rhotrices (h-rhotrices) were first
presented in [1]. Thus, addition and multiplication of two heart-based rhotrices are defined as:

R +Q =

〈 a

b h(R) d

e

〉
+

〈 f

g h(Q) j

k

〉
=

〈 a+ f

b+ g h(R) + h(Q) d+ j

e+ k

〉

and

R ◦Q =

〈 ah(Q) + fh(R)

bh(Q) + gh(R) h(R)h(Q) dh(Q) + jh(R)

eh(Q) + kh(R)

〉
,

respectively. A generalization of this hearty multiplication is given in [14] and in [6]. A row-
column multiplication of heart-based rhotrices was proposed by Sani [15] as:

R ◦Q =

〈 af + dg

bf + eg h(R)h(Q) aj + dk

bj + ek

〉
.

A generalization of this row-column multiplication was also later given by Sani [16] as:

Rn ◦Qn = 〈aij, cij〉 ◦ 〈bij, dlk〉 =

〈
t∑

i,j=1

(aijbij),
t−1∑
l,k=1

(clkdlk)

〉
, t = (n+ 1)/2,

where Rn and Qn are n-dimensional rhotrices (with n rows and n columns). These two methods
of multiplication of rhotrices are very popular in literature. In both methods, the heart plays a
significant role as shown above. A lot of work has been done on h-rhotrices. These works are also
well known in literature, such as the conversion of a rhotrix into a coupled matrix by Sani [17].
A generalization of rhotrix was introduced as paraletrix by Aminu and Michael [3]. This concept
shows more flexibility in mathematical arrays of numbers, where the number of rows and columns
need not be the same. It was noted that not every paraletrix has a heart. Consequently, a rhotrix
without a heart was introduced in [8, 9] as heartless rhotrices (hl-rhotrices). Such rhotrices were
found to be even-dimensional. The simplest non-trivial even-dimensional rhotrix is of dimension
two, and it is stated below:

Definition 1.2. A real rhotrix of dimension two is given as

A = {

〈 a

b d

e

〉
: a, b, d, e ∈ R}.
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It is to be noted that an n-dimensional rhotrix with n being even has its cardinality as |Rn| =
1
2
(n2 + 2n) ∀ n ∈ 2N . The multiplication of h-rhotrices, as remarked in [1], can be done in

many ways. This is also true with even-dimensional rhotrices. In this work, we define multipli-
cation of two even-dimensional rhotrices elementwise as follows:

A ◦B =

〈 a11
a21 a12

a22

〉
◦

〈 b11
b21 b12

b22

〉
=

〈 a11b11
a21b21 a12b12

a22b22

〉
.

Moreover, we shall be looking at multiplication of higher even-dimensional rhotrices, the
concept of empty rhotrix and the representation of an even-dimensional rhotrix over a linear
map. The concept of rhotrix linear transformation was first investigated by Mohammed et al [13].
The necessary and sufficient conditions for a rhotrix to be represented by a linear map were
given in [13]. It is to be noted that the rhotrix investigated was an h-rhotrix. These conditions
will be stated in the next section. However, an extension of these conditions will be considered
in this work, and the necessary and sufficient conditions for an even-dimensional rhotrix to be
represented by a linear map will be presented.

2 Preliminaries

Some definitions will be considered in this section that will be useful in achieving the results
anticipated in this work.

Definition 2.1. [13] A rhotrix R of dimension n is given as:

Rn =

〈
a11

a21 c11 a12
− − − − −

at1 − − − − − a1t
− − − − −

att−1 ct−1t−1 at−1t

att

〉
.

The element aij(i, j = 1, 2, ..., t) and ckl(k, l = 1, 2, ...t − 1) are called the major and minor
entries of R, respectively. This is usually denoted as Rn = 〈aij, ckl〉.

Definition 2.2. [13] Let Rn = 〈aij, ckl〉 be an n dimensional rhotrix. Then, aij is the (i, j)-
entries called the major entries of Rn and ckl is the (k, l)-entries called the minor entries of Rn.

Definition 2.3. [16] A rhotrix Rn = 〈aij, ckl〉 of n dimension is a couple of two matrices (aij)

and (ckl) consisting of its major and minor matrices of Rn.

Definition 2.4. [13] Let Rn = 〈aij, ckl〉 be an n dimensional rhotrix. Then, rows and columns of
aij(ckl) will be called the major (minor) rows and columns of Rn, respectively.
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Definition 2.5. [13] For any odd integer n, a n× n matrix (aij) is called a filled coupled matrix
if aij = 0 for all i, j whose sum i + j is odd. We shall refer to these entries as the null entries of
the filled coupled matrix.

Remark 2.1. (i) Rn = 〈aij, ckl〉 is a representation of any rhotrix. (ii) Moreover, an even-
dimensional rhotrix can also be represented as Rn = 〈aij, ckl〉 or simply as Rn = 〈ai, 〉. (iii) a
(n× n) filled coupled matrix has n2 entries.

Definition 2.6. For any odd integer n, a (n×n) matrix (aij) is called a completely filled coupled
matrix if aij = 0 for all i, j whose sum i + j is odd and for all i = j = n+1

2
. The entry corre-

sponding to aij = 0, i = j = n+1
2

is a special null-entry called the null entry of the completely
filled coupled matrix.

Definition 2.7. The entries aij whose sum i+j is even, except when i = j = n+1
2
∀ n ∈ 2Z++1,

are called the real entries of the completely filled coupled matrix.

Theorem 2.1. [13] Let n ∈ 2Z+ + 1 and F be a field. Then, a linear map T : F n 7→ F n can be
represented by a rhotrix with respect to the standard basis if and only if T is defined as:

T (x1, y1, x2, y2, ..., yt−1, xt) = (α1(x1, x2, ..., xt), β1(y1, y2, ..., yt−1),

α2(x1, x2, ..., xt), β2(y1, y2, ..., yt−1), ...,

βt−1(y1, y2, ..., yt−1), αt(x1, x2, ..., xt))

where t = n+1
2
, α1, α2, ..., αt and β1, β2, ..., βt−1 are any linear maps on F t and F t−1, respec-

tively.

Lemma 2.2. Let [aij]n be a (n× n) filled coupled matrix, then:

(a) The number of all the real entries is given as

Πn =
1

2
(n2 + 1) ∀ n ∈ 2Z+ + 1

(b) The number of all the null entries is given as

∅n =
1

2
(n2 − 1) ∀ n ∈ 2Z+ + 1

Proof. Since a (n× n) filled coupled matrix has n2 entries, then (a) + (b) = n2.. Consider:

1

2
(n2 + 1) +

1

2
(n2 − 1) = n2

Then, (a) and (b) are true.

Remark 2.2. Πn + ∅n as in Lemma 2.2 is an odd-dimensional rhotrix, i.e., the real entries are
odd.

Lemma 2.3. Let [aij]n be a completely filled coupled matrix, then:
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(a) The number of all the real entries is given as

Πn =
1

2
(n2 − 1) ∀n ∈ 2Z+ + 1

(b) The number of all the null entries is given as

∅n =
1

2
(n2 + 1) ∀n ∈ 2Z+ + 1.

Proof. The proof is similar to the proof of Lemma 2.2 above.

Remark 2.3. Πn + ∅n as in Lemma 2.3 is an even-dimensional rhotrix, i.e., the real entries are
even.

Theorem 2.4. There is a one-to-one correspondence between the set of all n-dimensional rhotri-
ces over a field F and the set of all n× n completely filled coupled matrices over F.

Proof. The proof follows from Lemma 2.3 and the fact that any n-dimensional rhotrix is n2

entries.

Remark 2.4. (i) The set of all real entries (Πn) of the completely filled coupled matrix corre-
sponds to the entries of an even-dimensional rhotrixRn = 〈aij, ckl〉 or simply asRn = 〈ai〉.

(ii) A filled coupled matrix and a completely filled coupled matrix comprise of both real and
null entries.

(iii) All heart-based rhotrices result in a filled coupled matrix while all even-dimensional rhotri-
ces result in a completely filled coupled matrix.

3 Main Results

This section presents the main results starting with the concept of empty rhotrix, then some
examples of filled and completely filled coupled matrices and multiplication of higher even-
dimensional rhotrices.

3.1 The concept of empty rhotrix

Definition 3.1. A rhotrix that has no entry is an empty rhotrix, e.g., A = 〈 〉.

Lemma 3.1. An empty rhotrix A of n-th dimension contains null-entry of a completely- filled
matrix as its only entry.

Proof. Recall that for an even-dimensional rhotrix |Rn| = 1
2
(n2 + 2n) ∀ n ∈ 2N. Since n ∈ 2N

implies that 0 ∈ 2N and R0 = 〈 〉. The proof follows.

Corollary 3.1.1. An empty real rhotrix is even-dimensional.
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Proof. We prove by contradiction. Let Rn be any n-dimensional real rhotrix. Suppose, n is odd,
then, its cardinality can be represented as

|Rn| =
1

2
(n2 + 1) n ∈ 2Z+ + 1.

Since, an empty rhotrix has no entry, its cardinality is zero. That is

0 =
1

2
(n2 + 1)

implies that n = ±i. Then, we have a contradiction. Now, suppose that n is even, then

|Rn| =
1

2
(n2 + 2n) n ∈ 2N

implies that n = 0 ∈ 2N. Thus, an empty rhotrix is even-dimensional.

Remark 3.1. N is a set of non-negative integers

3.2 Some examples of filled and completely filled coupled matrices

Example 3.1. A rhotrix of dimension five (R5) is given by:

R5 =

〈 a11
a21 c11 a12

a31 c21 a22 c12 a13
a32 c22 a23

a33

〉

Then its corresponding filled coupled matrix is presented below:

M(R5) =


a11 0 a12 0 a13
0 c11 0 c12 0

a21 0 a22 0 a23
0 c21 0 c22 0

a31 0 a32 0 a33


Example 3.2. A rhotrix of dimension seven (R7) is given by:

R7 =

〈
a11

a21 c11 a12
a31 c21 a22 c12 a13

a41 c31 a32 c22 a23 c13 a14
a42 c32 a33 c23 a24

a43 c33 a34
a44

〉

Then its corresponding filled coupled matrix will be presented below:
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M(R7) =



a11 0 a12 0 a13 0 a14
0 c11 0 c12 0 c13 0

a21 0 a22 0 a23 0 a24
0 c21 0 c22 0 c23 0

a31 0 a32 0 a33 0 a34
0 c31 0 c32 0 c33 0

a41 0 a42 0 a43 0 a44


Example 3.3. A rhotrix of dimension four (R4) is given by:

R4 =

〈 a11
a21 c11 a12

a31 c21 c12 a13
a32 c22 a23

a33

〉

Then its corresponding completely filled coupled matrix is presented below:

C(R4) =


a11 0 a12 0 a13
0 c11 0 c12 0

a21 0 0∗ 0 a23
0 c21 0 c22 0

a31 0 a32 0 a33


Example 3.4. A rhotrix of dimension six (R6) is given by:

R6 =

〈
a11

a21 c11 a12
a31 c21 a22 c12 a13

a41 c31 a32 a23 c13 a14
a42 c32 a33 c23 a24

a43 c33 a34
a44

〉

Then its corresponding completely filled coupled matrix is:

C(R6) =



a11 0 a12 0 a13 0 a14
0 c11 0 c12 0 c13 0

a21 0 a22 0 a23 0 a24
0 c21 0 0∗ 0 c23 0

a31 0 a32 0 a33 0 a34
0 c31 0 c32 0 c33 0

a41 0 a42 0 a43 0 a44


Remark 3.2. A completely filled coupled matrix is obtained from even-dimensional rhotrix, and
contains the null-entry of the completely filled coupled matrix denoted as 0∗, while a filled coupled
matrix is obtained from odd-dimensional rhotrices.
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3.3 Multiplication of higher even-dimensional rhotrices

Multiplication of higher even-dimensional rhotrices whether even or odd dimensional can be de-
fined in many ways. In this work, elementwise multiplication method is presented for higher
even-dimensional rhotrices. Examples of rhotrices of dimension four are presented for the pur-
pose of demonstration. Let

A =

〈 a1
a2 a3 a4

a5 a6 a7 a8
a9 a10 a11

a12

〉
, B =

〈 b1
b2 b3 b4

b5 b6 b7 b8
b9 b10 b11

b12

〉

then

A�B =

〈 a1b1
a2b2 a3b3 a4b4

a5b5 a6b6 a7b7 a8b8
a9b9 a10b10 a11b11

a12b12

〉

Example 3.5. Let

A =

〈 2

3 1 4

5 6 7 8

9 10 5

3

〉
, B =

〈 3

2 4 1

7 8 9 5

6 8 3

10

〉

then

A�B =

〈 2� 3

3� 2 1� 4 4� 1

5� 7 6� 8 7� 9 8� 5

9� 6 10� 8 5� 3

3� 10

〉
=

〈 6

6 4 4

35 48 63 40

54 80 15

30

〉

Generally, a rhotrix R of dimension n (n being even) can be written as:

Rn =

〈
r1

r2 r3 r4
− − − − −

− − − − − −
− − − − −

rn2+2n−6
2

rn2+2n−4
2

rn2+2n−2
2

rn2+2n
2

〉
.
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A generalization of the elementwise multiplication of even-dimensional rhotrices is as fol-
lows. Let Rn = 〈ai〉 and Qn = 〈bj〉, be two even-dimensional rhotrices, then their multiplication
is as follows

Rn �Qn = 〈ai〉 � 〈bj〉 =

〈
t∑

i=1

ai

〉
�

〈
t∑

j=1

bj

〉
=

〈
t∑

k=1

(akbk)

〉
, t = (n2 + 2n)/2, n ∈ 2N,

where the product (aijbij) is empty whenever i = j = t+1
2
∀ t ∈ 2Z+ + 1.

4 Linear maps on an even-dimensional rhotrix

The concept of representation by a linear map helps to establish the existence of a linear structure.
In this section, we investigate the representation of an even-dimensional rhotrix over a linear map.

Theorem 4.1. Let n ∈ 2Z+ + 1 and F be a field. Then, a linear map τ : F n 7→ F n can be
represented by an even-dimensional rhotrix with respect to the standard basis if and only if τ is
defined as:

τ(x1, y1, x2, y2, ..., yt−1, xt) = (α1(x1, x2, ..., xt), β1(y1, y2, ..., yt−1),

α2(x1, x2, ..., xt), β2(y1, y2, ..., yt−1), ...,

β t
2
(y1, y2, ..., 0(y t

2
), ..., yt−1) ∀ t− 1 ∈ 2Z+ + 1,

α t+1
2

(x1, x2, ..., 0(x t+1
2

), ..., xt) ∀ t ∈ 2Z+ + 1, ...,

βt−1(y1, y2, ..., yt−1), αt(x1, x2, ..., xt)),

where t = n+2
2
, α1, α2, ..., α t+1

2
, ..., αt and β1, β2, ..., β t

2
, ..., βt−1 are any linear maps on F t and

F t−1, respectively.

Proof. Case 1 (when t ∈ 2Z+ + 1).
Given that

τ(x1, y1, x2, y2, ..., yt−1, xt) = (α1(x1, x2, ..., xt), β1(y1, y2, ..., yt−1),

α2(x1, x2, ..., xt), β2(y1, y2, ..., yt−1), ...,

β t
2
(y1, y2, ..., 0(y t

2
), ..., yt−1) ∀ t− 1 ∈ 2Z+ + 1,

α t+1
2

(x1, x2, ..., 0(x t+1
2

), ..., xt) ∀ t ∈ 2Z+ + 1, ...,

βt−1(y1, y2, ..., yt−1), αt(x1, x2, ..., xt))

where t = n+2
2
, α1, α2, ..., α t+1

2
, ..., αt and β1, β2, ..., β t

2
, ..., βt−1 are any linear maps on F t and

F t−1, respectively.
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Now let us consider the standard basis:

τ(e1) = [α1(1, 0, . . . , 0), 0, . . . , αt(1, 0. . . . , 0)]

τ(e1) = [0, β1(1, 0, . . . , 0), 0, . . . , βt−1(1, 0. . . . , 0)]

...

τ(e1) = [α1(1, 0, . . . , 0), 0, . . . , α t+1
2

(0. . . . , 0(x t+1
2

), . . . 0), . . . , αt(1, 0. . . . , 0)]

...

τ(et) = [0, β1(0, . . . , t), 0, . . . , βt−1(0. . . . , 0), 1]

τ(et) = [α1(0, . . . , t), 0, . . . , αt(0. . . . , 1)]

Putting the above linear equations into a matrix, we have

α11 0 α12 . . . α1t−1 0 α1t

0 β11 0 . . . 0 β1t−1 o
...

...
... . . . ...

...
...

α t+1
2

1 0 α t+1
2

2 . . . 0 . . . α t+1
2

t

...
...

... . . . ...
...

...
0 βt−11 0 . . . 0 βt−1t−1 0

αt1 0 αt2 . . . αtt−1 0 αtt


The transpose of the above matrix is the matrix of transformation denoted as

m(τ) =



α11 0 α12 . . . α1t−1 0 α1t

0 β11 0 . . . 0 β1t−1 o
...

...
... . . . ...

...
...

α t+1
2

1 0 α t+1
2

2 . . . 0 . . . α t+1
2

t

...
...

... . . . ...
...

...
0 βt−11 0 . . . 0 βt−1t−1 0

αt1 0 αt2 . . . αtt−1 0 αtt



T

The result is a completely filled coupled matrix from which we have the even-dimensional
rhotrix representation.

Conversely, suppose that τ : F n 7→ F n has an even-dimensional rhotrix representation
〈αij, βkl〉 in the standard basis. Then, the corresponding matrix representation of τ is the com-
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pletely filled coupled matrix given above. From this, we obtain the linear system below:

τ(e1) = [α1(1, 0, . . . , 0), 0, . . . , αt(1, 0. . . . , 0)]

τ(e1) = [0, β1(1, 0, . . . , 0), 0, . . . , βt−1(1, 0. . . . , 0)]

...

τ(e1) = [α1(1, 0, . . . , 0), 0, . . . , α t+1
2

(0. . . . , 0(x t+1
2

), . . . 0), . . . , αt(1, 0. . . . , 0)]

...

τ(et) = [0, β1(0, . . . , t), 0, . . . , βt−1(0. . . . , 0), 1]

τ(et) = [α1(0, . . . , t), 0, . . . , αt(0. . . . , 1)]

Case 1 (when t− 1 ∈ 2Z+ + 1).
The proof follows similarly.

Remark 4.1. The above theorem is seeing our even-dimensional rhotrix as a completely filled
couple matrix.

Example 4.1. Consider the linear mapping τ : R 7→ R defined by τ(x, y, z) = (ax+ dz, 0, bx+

ez). Find the hl-rhotrix represented by the linear transformation(linear map) τ with respect to
the standard basis.

Solution:
τ(1, 0, 0) =(a, 0, b)

τ(0, 1, 0) =(0, 0, 0)

τ(0, 0, 1) =(d, 0, e)

Then, putting this into matrix gives a 0 b

0 0 0

d 0 e


Thus, the matrix of representation is the transpose of the above matrix

m(τ) =

a 0 b

0 0 0

d 0 e


T

=

a 0 d

0 0 0

b 0 e


which is a completely filled coupled matrix. Then the even-dimensional rhotrix by τ is

R(τ) =

〈 a

b d

e

〉

Example 4.2. Consider the linear mapping τ : R 7→ R defined by τ(a, b, c, d, e) = (a + 2c −
5e, 3b+ 6d, 4a+ 10e, 8b− 11d, 9a+ 12c+ 13e). Find the even-dimensional rhotrix represented
by the linear transformation(linear map) τ with respect to the standard basis.
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Solution:
τ(1, 0, 0, 0, 0) =(1, 0, 4, 0, 9)

τ(0, 1, 0, 0, 0) =(0, 3, 0, 8, 0)

τ(0, 0, 1, 0, 0) =(2, 0, 0, 0, 12)

τ(0, 0, 0, 1, 0) =(0, 6, 0,−11, 0)

τ(0, 0, 0, 0, 1) =(−5, 0, 10, 0, 13)

Thus, the matrix of representation is given below:

m(τ) =


1 0 4 0 9

0 3 0 8 0

2 0 0 0 12

0 6 0 −11 0

−5 0 10 0 13



T

=


1 0 2 0 −5

0 3 0 6 0

4 0 0 0 10

0 8 0 −11 0

9 0 12 0 13


which is a completely filled coupled matrix. Then the even-dimensional rhotrix by τ is

R(τ) =

〈 1

4 3 2

9 8 6 −5

12 −11 10

13

〉

This is an even-dimensional rhotrix of dimension 4.

Example 4.3. Consider the linear mapping τ : R 7→ R defined by τ(a, b, c, d, e, f, g) = (3a +

2c−4g−2e, 5b+4d+3f, 5a−7c+3e−g, 8b−5f, 7a+12c−3e+5g,−4b+2d+f, a+14c−7e+10g).
Find the even-dimensional rhotrix represented by the linear transformation(linear map) τ with
respect to the standard basis.

Solution:
τ(1, 0, 0, 0, 0, 0, 0) =(3, 0, 5, 0, 7, 0, 1)

τ(0, 1, 0, 0, 0, 0, 0) =(0, 5, 0, 8, 0,−4, 0)

τ(0, 0, 1, 0, 0, 0, 0) =(2, 0,−7, 0, 12, 0, 14)

τ(0, 0, 0, 1, 0, 0, 0) =(0, 4, 0, 0, 0, 2, 0)

τ(0, 0, 0, 0, 1, 0, 0) =(−2, 0, 3, 0,−3, 0,−7)

τ(0, 0, 0, 0, 1, 0, 0) =(0, 3, 0,−5, 0, 1, 0)

τ(0, 0, 0, 0, 1, 0, 0) =(−4, 0,−1, 0, 5, 0, 10)

Thus, the matrix of representation is given below:

m(τ) =



3 0 5 0 7 0 1

0 5 0 8 0 −4 0

2 0 −7 0 12 0 14

0 4 0 0 0 2 0

−2 0 3 0 −3 0 −7

0 3 0 −5 0 1 0

−4 0 −1 0 5 0 10



T

=



3 0 2 0 −2 0 −4

0 5 0 4 0 3 0

5 0 −7 0 3 0 −1

0 8 0 0 0 −5 0

7 0 12 0 −3 0 5

0 −4 0 2 0 1 0

1 0 14 0 −7 0 10
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which is a completely filled coupled matrix. Then the even-dimensional rhotrix by τ is

R(τ) =

〈
3

5 5 2

7 8 −7 4 −2

1 −4 12 3 3 −4

14 2 −3 −5 −1

−7 1 5

10

〉

This is an even-dimensional rhotrix of dimension 6.

5 Conclusion

A strenuous effort was made to represent an even-dimensional rhotrix over a linear map. This
representation showed that an even-dimensional rhotrix is a linear structure, and that it is a special
type of rhotrix. All even-dimensional rhotrices are rhotrices except for the converse. Representing
a rhotrix this way enables us to have by definition, even-dimensional rhotrices. Therefore, this
work is an expansion and a contribution to rhotrix algebra.
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