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1 Introduction

In this paper we study how we can obtain more interesting congruences modulo a power of a
prime number p (super congruences) in the ring of p-integer Zp, involving binomial coefficients,
harmonic numbers and generalized harmonic numbers. Many great mathematicians have been
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interested to study congruences of sums concerning harmonic nummber and binomial coefficients
such the work of Gould [4], Dilsher [2], Prodinger [10], Choi and Srivastava [1], Sun [13],
Meštrović and Andji [8], Wang [15] and other, in our work we are interested to find closed
expressions for the sums of the form

q∑
k=1

(−1)k+1 kl

(
n

k

)
Hk,m,

and congruences of the form

p−1
2∑

k=1

(−1)k+1 kl

(
p− 1

k

)
Hk

(
mod p3

)
,

[ p3 ]∑
k=1

(−1)k+1 kl

(
p− 1

k

)
Hk

(
mod p2

)
and

p−1∑
k=1

(−1)k+1 kl

(
np− 1

k

)
Hk,m (mod pr) , r ∈ {2, 3, 4} ,

for some values of l,m, where Hn,m to be the n-th generalized harmonic number defined by

H0 = 0, Hn,m = 1 +
1

2m
+ · · ·+ 1

nm
.

We denote

S (n, q,m) =

q∑
k=1

(−1)k

km

(
n

k − 1

)
.

The sequence (S (n, q,m)) satisfies

S (n, q,m− 1) = (n+ 1)S (n, q,m)− nS (n− 1, q,m) , (1)

S (n, q, 0) = (−1)q q
n

(
n

q

)
, (2)

S (n, q, 1) =
1

n+ 1

(
(−1)q

(
n

q

)
− 1

)
, (3)

S (n, q,m) =
1

n+ 1

(
n∑

j=1

S (j, q,m− 1)− 1

)
. (4)

In 2017, He [5] established the following congruences:

Theorem 1.1 ([5]). Let p > 3 be a prime number. We have

p−1∑
k=0

(−1)k+1

(
p− 1

k

)
Hk,3 ≡

−1
3
pBp−3

(
mod p2

)
,

p−1∑
k=0

(−1)k+1

(
p− 1

k

)
Hk,2 ≡

1

3
p2Bp−3

(
mod p3

)
,

where Bn is the n-th Bernoulli number defined by

B0 = 1, Bn =
n−1∑
k=0

(
n

k

)
Bk, n ≥ 1.
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Motivated by the above work of He [5], we establish in this paper the following results.

Theorem 1.2. Let p > 3 be a prime, n be a positive integer and m, l be nonegative integers such
m− l ∈ {2, 3, · · · , p− 2} . Then

p−1∑
k=0

(−1)k+1
(
(np− 1− k) (k + 1)l + kl+1

)(np− 1

k

)
Hk,m (5)

≡
(
n− 1 +

1

m− l

)
pBp−m+l

(
mod p2

)
.

In particular, for l = 0, p > 3 and m ∈ {2, . . . , p− 2} we get

p−1∑
k=1

(−1)k+1

(
np− 1

k

)
Hk,m ≡ −

(
n− 1 +

1

m

)
pBp−m

(
mod p2

)
, (6)

and for l = 1 we get
p−1∑
k=0

(−1)k+1 k

(
np− 1

k

)
Hk,m

≡


1
2

(
n− 1 + 1

m

)
pBp−m (mod p2) if m odd,

−1
2

(
n− 1 + 1

m−1

)
pBp+1−m (mod p2) if m even.

(7)

Theorem 1.3. Let p > 3 be a prime and m be a integer with m ∈
{
1, . . . , p−3

2

}
. We have

p−1∑
k=0

(−1)k+1

(
np− 1

k

)
Hk,2m ≡

A (m,n)

2 (2m+ 1)
p2Bp−1−2m

(
mod p3

)
, (8)

where
A (m,n) = (m+ 1) (2m+ 1)n2 + (m+ 1) (2m− 1)n− 2m (2m+ 1) .

Remark 1. For m = 3 and n = 1 in (6) we obtain the congruence (1.2) given in [5, Theorem 1.2],
and, for m = 1 and n = 1 in (8) we obtain the congruence (1.1) given in [5].

Theorem 1.4. Let p be a prime number and n be a positive integer. Then
1) if p ≥ 5, we have

p−1
2∑

k=1

(−1)k+1

(
p− 1

k

)
Hk ≡

(
q2 −

1

2

)
+

(
3

2
q22 + q2 −

1

2

)
p

+

(
1

3
q32 +

1

2
q22 + q2 −

1

2
+

7

24
Bp−3

)
p2
(
mod p3

)
,

2) if p ≡ 1 (mod 3), we have
p−1
3∑

k=1

(−1)k+1

(
np− 1

k

)
Hk

≡
(
q3 −

1

3

)
+

(
3n− 1

2
q23 +

n+ 1

2
q3 −

2n− 1

3
+

1

9
Bp−2

(
1

3

))
p
(
mod p2

)
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and if p ≡ 2 (mod 3), we have
p−2
3∑

k=1

(−1)k+1

(
np− 1

k

)
Hk

≡ 1

2
q3 −

2

3
+

(
3n− 1

4
q23 −

n− 1

2
q3 −

4n− 1

3
− 1

18
Bp−2

(
1

3

))
p
(
mod p2

)
,

where qa is the quotient of Fermat base a defined for a given prime number p by

qa = qp (a) :=
ap−1 − 1

p
, a ∈ Z− pZ,

and {Bn(x)} is the sequence of Bernoulli polynomials defined by

Bn (x) =
n−1∑
k=0

(
n

k

)
Bn−kx

k, n ≥ 1.

The next theorem is a generalization of Theorem 1.1 given [5].

Theorem 1.5. Let p > 5 be a prime number. We have
p−1∑
k=1

(−1)k+1

(
p− 1

k

)
Hk,2

≡
(
B2p−4

2p− 4
− 2

Bp−3

p− 3

)
p2 +

(
B2p−4

2p− 4
− 2

Bp−3

p− 3

)
p3
(
mod p4

)
.

Corollary 1.5.1. Let p ≥ 5 be a prime number and n be a positive integer with n 6≡ 0 (mod p) .

We have
p−1∑
k=0

(−1)k+1

(
n

k

)
Hk ≡

1

n

(
1−

(
n− 1

p− 1

)) (
mod p3

)
.

2 Basic tools to prove the main theorems

In order to prove the main Theorems, we need some auxiliary results given by the following
Lemmas.

Lemma 2.1 ( [11, Th. 5.1, Cor. 5.1]). Let p > 3 be a prime. Then, for m ∈ {1, 3, . . . , p− 4}
being an odd number, we have

p−1∑
k=1

1

km
≡ m (m+ 1)

2

Bp−2−m

p− 2−m
p2
(
mod p3

)
, (9)

and for m ∈ {1, 2, . . . , p− 2} , we have
p−1∑
k=1

1

km
≡ mp

m+ 1
Bp−1−m

(
mod p2

)
. (10)

In particular, for m ∈ {1, 2, . . . , p− 2} , we have
p−1∑
k=1

1

km
≡ 0 (mod p) . (11)
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Lemma 2.2 ([13, Lem. 3.1]). Let n and l be positive integers with l ≤ n− 1, and let p > n be a
prime number. Then

p−1∑
k=1

Hk,l

kn−l
≡


(−1)l−1

n

(
n
l

)
Bp−n (mod p) , if n odd,

pBp−1−n

2(n+1)

(
n+ (−1)l n−2l

l+1

(
n+1
l

))
(mod p2) , if n even.

(12)

Lemma 2.3 ([11, Th. 5.2]). Let p > 3 be a prime number. Then

p−1
2∑

k=1

1

k
≡ −2q2 + pq22 −

2

3
p2q32 −

7

12
p2Bp−2

(
1

3

)(
mod p3

)
. (13)

Lemma 2.4. Let p be an odd prime number. Then, for n ∈ {1, 2, . . . , p− 2} we have

p−1∑
k=1

Hk

kn
≡ Bp−1−n (mod p) (14)

and for n ∈
{
1, 2, . . . , p−3

2

}
we have

p−1∑
k=1

H2
k

k2n−1
≡ Bp−1−2n (mod p) . (15)

Proof. If n is even, we set n = 2m and l = 1 in relation (12), and if n is odd, we use the fact that
Hp−k = Hp−1 −Hk−1 ≡ −Hk−1 (mod p) to get

p−1∑
k=1

Hk

kn
=

p−1∑
k=1

Hp−k

(p− k)n
≡ −

p−1∑
k=1

Hk−1

kn
= −

p−1∑
k=1

Hk − 1
k

kn
= −

p−1∑
k=1

Hk

kn
+

p−1∑
k=1

1

kn+1
,

then

2

p−1∑
k=1

Hk

kn
≡

p−1∑
k=1

1

kn+1
≡ 0 = Bp−1−n (mod p) ,

because Bp−1−n = 0 when p− 1− n is odd. Similarly, we have

p−1∑
k=1

H2
k

k2n−1
=

p−1∑
k=1

H2
p−k

(p− k)2n−1

≡ −
p−1∑
k=1

1

k2n−1

(
Hk −

1

k

)2

= −
p−1∑
k=1

H2
k

k2n−1
+ 2

p−1∑
k=1

Hk

k2n
−Hp−1,2n (mod p) ,

so, we get

2

p−1∑
k=1

H2
k

k2n−1
≡ 2

p−1∑
k=1

Hk

k2n
−Hp−1,2n ≡ 2Bp−1−2n (mod p) ,

which completes the proof.
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Lemma 2.5. Let p be a prime number and let k ∈ {1, 2, ..., p} . Then, for any integer n ≥ 1, we
have (

np− 1

k − 1

)
≡ (−1)k−1

(
1− npHk−1 +

n2p2

2

(
H2

k−1 −Hk−1,2

)) (
mod p3

)
. (16)

Reducing the modulus in this congruence we get(
np− 1

k − 1

)
≡ (−1)k−1 (1− npHk−1)

(
mod p2

)
. (17)

Proof. As of the proofs given [8, Lem. 2.3], we have(
np− 1

k − 1

)
=

(np− 1) (np− 2) · · · (np− j) · · · (np− (k − 1))

1.2 · · · j · · · (k − 1)

=
(np
1
− 1
)(np

2
− 1
)
· · ·
(
np

j
− 1

)
· · ·
(

np

k − 1
− 1

)
= (−1)k−1

(
1− np

1

)(
1− np

2

)
· · ·
(
1− np

j

)
· · ·
(
1− np

k − 1

)
≡ (−1)k−1

(
1− np

k−1∑
i=1

1

i
+ n2p2

∑
1≤i<j≤k−1

1

ij

)

≡ (−1)k−1

(
1− npHk−1 +

n2p2

2

(
H2

k−1 −Hk−1,2

)) (
mod p3

)
.

Lemma 2.6. Let

Sn,p,m := S (np− 1, p− 1,m) =

p−1∑
k=1

(−1)k

km

(
np− 1

k − 1

)
.

Then, if m ∈ {1, 2, ..., p− 3} , we obtain

Sn,p,m ≡ 0 (mod p) and Sn,p,m ≡
(
n− m

m+ 1

)
pBp−1−m

(
mod p2

)
, (18)

and, if m ∈
{
1, 2, ..., p−3

2

}
, we obtain

Sn,p,2m−1 ≡ −
T (m,n)

2 (2m+ 1)
p2Bp−1−2m

(
mod p3

)
, (19)

where T (m,n) = (2m+ 1) (m− 1)n2 + (2m− 1) (m+ 1)n− 2m (2m− 1) .

Proof. In view of the congruence (17) we have

Sn,p,m =

p−1∑
k=1

(−1)k 1

km

(
np− 1

k − 1

)

≡ −
p−1∑
k=1

1− npHk−1

km

= −
p−1∑
k=1

1

km
+ np

p−1∑
k=1

Hk − 1
k

km

= −
p−1∑
k=1

1

km
+ np

(
p−1∑
k=1

Hk

km
−

p−1∑
k=1

1

km+1

) (
mod p2

)
,

using the relations of congruences (10), (11) and (14) the proof of (18) is complete.
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The congruence (9) gives

p−1∑
k=1

1

k2m−1
≡ (2m− 1)m

p− 2m− 1
p2Bp−2m−1 ≡ −m

2m− 1

2m+ 1
p2Bp−2m−1

(
mod p3

)
(20)

and by using the above congruences and the congruences (10), (11), (14), (15) and (16) we get

Sn,p,2m−1 =

p−1∑
k=1

(−1)k 1

k2m−1

(
np− 1

k − 1

)

≡ −
p−1∑
k=1

1

k2m−1

(
1− npHk−1 +

n2p2

2

(
H2

k−1 −Hk−1,2

))

= −
p−1∑
k=1

1

k2m−1
+ np

p−1∑
k=1

Hk−1

k2m−1
− n2p2

2

(
p−1∑
k=1

H2
k−1

k2m−1
−

p−1∑
k=1

Hk−1,2

k2m−1

)

= −
p−1∑
k=1

1

k2m−1
+ np

p−1∑
k=1

Hk − 1
k

k2m−1
− n2p2

2

(
p−1∑
k=1

(
Hk − 1

k

)2
k2m−1

−
p−1∑
k=1

Hk,2 − 1
k2

k2m−1

)

= −
p−1∑
k=1

1

k2m−1
+ np

(
p−1∑
k=1

Hk

k2m−1
−

p−1∑
k=1

1

k2m

)

−n2p2

2

(
p−1∑
k=1

H2
k

k2m−1
− 2

p−1∑
k=1

Hk

k2m
+ 2

p−1∑
k=1

1

k2m+1
−

p−1∑
k=1

Hk,2

k2m−1

)

≡ m
2m− 1

2m+ 1
p2Bp−2m−1 + np

(
1 + 3m− 2m2

2 (2m+ 1)
pBp−2m−1 −

2m

2m+ 1
pBp−1−2m

)
−n2p2

2
(Bp−2m−1 − 2Bp−1−2m +mBp−1−2m)

(
mod p3

)
,

and this is the congruence (19).

Lemma 2.7. Let p > 3 be a prime number. Then

[ p3 ]∑
k=1

1

k
≡ −p

6
LP

3
Bp−2

(
1

3

)
− 3

2
q3 +

3

4
pq23

(
mod p2

)
, (21)

where L p
3

is Legendre symbol defined by

LP
3
=

{
1 if p ≡ 1 (mod 3) ,

−1 if p ≡ 2 (mod 3) .

Proof. We have

[ p3 ]∑
k=1

1

p− 3k
=

[ p3 ]∑
k=1

p+ 3k

(p− 3k) (p+ 3k)
=

[ p3 ]∑
k=1

p+ 3k

p2 − 9k2
≡ −1

9

[ p3 ]∑
k=1

p+ 3k

k2
,

i.e.
[ p3 ]∑
k=1

1

p− 3k
≡ −p

9

[ p3 ]∑
k=1

1

k2
− 1

3

[ p3 ]∑
k=1

1

k

(
mod p2

)
,
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and by the relation 42 given in [7] and Theorem 3.3 given in [12] we obtain

[ p3 ]∑
k=1

1

p− 3k
≡ 1

2
q3 −

1

4
pq23

(
mod p2

)
and

[ p3 ]∑
k=1

1

k2
≡ 1

2
L p

3
Bp−2

(
1

3

)
(mod p) .

So, we may state −1
3

[ p3 ]∑
k=1

1
k
≡ p

18
L p

3
Bp−2

(
1
3

)
+ 1

2
q3 − 1

4
pq23 (mod p2) .

Theorem 2.8. For m, l, n ≥ 1, q ≥ 1 be integers we have

q∑
k=0

(−1)k+1
(
(n− k) (k + 1)l + kl+1

)(n
k

)
Hk,m (22)

= (−1)q+1 (n− q) (q + 1)l
(
n

q

)
Hq,m − nS (n− 1, q,m− l) .

In particular, for l = 0, 1 we get

q∑
k=0

(−1)k+1 n

(
n

k

)
Hk,m = (−1)q+1 (n− q)

(
n

q

)
Hq,m − nS (n− 1, q,m) , (23)

q∑
k=0

(−1)k+1 (nk + n− k)

(
n

k

)
Hk,m =

(−1)q+1 (n− q) (q + 1)

(
n

q

)
Hq,m − nS (n− 1, q,m− 1) ,

for q = n we get

n∑
k=0

(−1)k+1
(
(n− k) (k + 1)l + kl+1

)(n
k

)
Hk,m = −nS (n− 1, n,m− l) .

and for m = 1 and l = 0 or 1 we get

n

q∑
k=0

(−1)k+1

(
n

k

)
Hk = (−1)q+1 (n− q)

(
n

q

)(
Hq +

1

n

)
+ 1 and (24)

q∑
k=0

(−1)k+1 k

(
n

k

)
Hk = (−1)q+1 n− q

n− 1

(
n

q

)(
qHq +

q

n− 1
− 1

n

)
− 1

n− 1
.

Proof. We proceed as follows

(−1)q ql+1Hq,m

(
n

q

)
=

q∑
k=0

(−1)k kl+1

(
n

k

)
Hk,m −

q−1∑
k=0

(−1)k kl+1

(
n

k

)
Hk,m

=

q−1∑
k=0

(−1)k+1 (k + 1)l+1

(
n

k + 1

)
Hk+1,m +

q−1∑
k=0

(−1)k+1 kl+1

(
n

k

)
Hk,m
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=

q−1∑
k=0

(−1)k+1 (n− k) (k + 1)l
(
n

k

)(
Hk,m +

1

(k + 1)m

)
+

q−1∑
k=0

(−1)k+1 kl+1

(
n

k

)
Hk,m

=

q−1∑
k=0

(−1)k+1 (n− k) (k + 1)l
(
n

k

)
Hk,m +

q−1∑
k=0

(−1)k+1 n− k

(k + 1)m−l

(
n

k

)

+

q−1∑
k=0

(−1)k+1 kl+1

(
n

k

)
Hk,m

=

q−1∑
k=0

(−1)k+1
(
(n− k) (k + 1)l + kl+1

)(n
k

)
Hk,m +

q−1∑
k=0

(−1)k+1 n− k

(k + 1)m−l

(
n

k

)

=

q−1∑
k=0

(−1)k+1
(
(n− k) (k + 1)l + kl+1

)(n
k

)
Hk,m +

q∑
k=1

(−1)k n− k + 1

km−l

(
n

k − 1

)

=

q−1∑
k=0

(−1)k+1
(
(n− k) (k + 1)l + kl+1

)(n
k

)
Hk,m

+ (n+ 1)S (n, q,m− l)− S (n, q,m− l − 1)

=

q−1∑
k=0

(−1)k+1
(
(n− k) (k + 1)l + kl+1

)(n
k

)
Hk,m + nS (n− 1, q,m− l) .

Remark 2. In Theorem 2.8, if q = n, we get the known identity (see, for example [1, 2, 4]). For
m = 1 we have

n∑
k=1

(−1)k+1

(
n

k

)
Hk =

1

n
(25)

and for m = 2 we have
n∑

k=0

(−1)k+1

(
n

k

)
Hk,2 = −

Hn

n
. (26)

Also, for q = n and l = m or m− 1 in Theorem 2.8 we have

n∑
k=0

(−1)k+1 ((n− k) (k + 1)m + km+1
)(n

k

)
Hk,m = 0,

n∑
k=0

(−1)k+1 ((n− k) (k + 1)m−1 + km
)(n

k

)
Hk,m = 1.

3 Proofs of the main theorems

Proof of Theorem 1.2. For q = p− 1 and n := np− 1 in the identity (22) we get

p−1∑
k=0

(−1)k+1
(
(np− 1− k) (k + 1)l + kl+1

)(np− 1

k

)
Hk,m

= (−1)p (n− 1) pl+1

(
np− 1

p− 1

)
Hp−1,m − (np− 1)S (np− 2, p− 1,m− l) ,

and since Hp−1,m ≡ 0 (mod p) we obtain
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p−1∑
k=0

(−1)k+1
(
(np− 1− k) (k + 1)l + kl+1

)(np− 1

k

)
Hk,m

≡ − (np− 1)S (np− 2, p− 1,m− l)
(
mod p2

)
.

So, for q = p − 1 and n := np − 1 in the recurrence relation (1) and by using the congruence
(18), we get

(np− 1)S (np− 2, p− 1,m− l)

= npS (np− 1, p− 1,m− l)− S (np− 1, p− 1,m− l − 1)

= npSn,p,m−l − Sn,p,m−l−1

≡ −Sn,p,m−l−1

≡ −
(
n− 1 +

1

m− l

)
pBp−m+l

(
mod p2

)
.

Hence

p−1∑
k=0

(−1)k+1
(
(np− 1− k) (k + 1)l + kl+1

)(np− 1

k

)
Hk,m

≡
(
n− 1 +

1

m− l

)
pBp−m+l

(
mod p2

)
,

which is the congruence (5).
For l = 0 in the congruence (5) we get

(np− 1)

p−1∑
k=1

(−1)k+1

(
np− 1

k

)
Hk,m ≡

(
n− 1 +

1

m

)
pBp−m

(
mod p2

)
, (27)

and since 1
np−1

≡ −1− np (mod p2) , the congruence (6) follows.
For l = 1 in the congruence (5) we get

(np− 2)

p−1∑
k=1

(−1)k+1 k

(
np− 1

k

)
Hk,m + (np− 1)

p−1∑
k=1

(−1)k+1

(
np− 1

k

)
Hk,m

≡
(
n− 1 +

1

m− 1

)
pBp−m+1

(
mod p2

)
,

and by the congruence (27) and the congruence

1

np− 2
≡ −1

2
− 1

4
np
(
mod p2

)
,

the congruence (7) follows.
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Proof of Theorem 1.3. From the relations (23), (10), (18) and (19) we get

(np− 1)

p−1∑
k=0

(−1)k+1

(
np− 1

k

)
Hk,2m

= − (n− 1) p

(
np− 1

p− 1

)
Hp−1,2m − (np− 1)S (np− 2, p− 1, 2m)

≡ − (n− 1) pHp−1,2m − (np− 1)S (np− 2, p− 1, 2m)

= − (n− 1) pHp−1,2m − npSn,p,2m + Sn,p,2m−1

= − (n− 1)
2mp2

2m+ 1
Bp−1−2m − np2

(
n− 2m

2m+ 1

)
Bp−1−2m − T (m,n)

p2Bp−1−2m

2 (2m+ 1)

≡
(
−n2 +

−4m (n− 1) + 4nm− T (m,n)

2 (2m+ 1)

)
p2Bp−1−2m

(
mod p3

)
,

and since
1

np− 1
≡ −1− np− n2p2

(
mod p3

)
,

the proof of theorem is complete.

Proof of Theorem 1.4. 1) If we let q = p−1
2

and n = p− 1 in relation (24), we have then

p−1
2∑

k=1

(−1)k+1

(
p− 1

k

)
Hk = −

1

2
(−1)

p−1
2

(
p− 1
p−1
2

)(
H p−1

2
+

1

p− 1

)
+

1

p− 1
,

using the known congruence obtained by Morley [9](
p− 1
p−1
2

)
≡ (−1)

p−1
2 4p−1 = (−1)

p−1
2 (1 + pq2)

2 (mod p3
)
,

and the congruence
1

p− 1
≡ −1− p− p2

(
mod p3

)
,

and the relations (13), (24) we have
p−1
2∑

k=1

(−1)k+1

(
p− 1

k

)
Hk

≡ −1
2

(1 + pq2)
2

(
−2q2 + pq22 −

2

3
p2q32 −

7

12
p2Bp−2

(
1

3

)
+

1

p− 1

)
+

1

p− 1

(
mod p3

)
,

the proof is complete.
2) a) For k − 1 =

[
p
3

]
the relation (17) becomes(

np− 1[
p
3

] ) ≡ (−1)[
p
3 ]
(
1− npH[ p3 ]

) (
mod p2

)
,

and since H[ p3 ]
≡ −3

2
q3 (mod p) (see [3]) we obtain(

np− 1[
p
3

] ) ≡ (−1)[
p
3 ]
(
1 +

3

2
npq3

) (
mod p2

)
.

49



For p = 1 (mod 3) we use the congruence

1

np− 1
≡ −1− np

(
mod p2

)
,

and the relations (21), (24) to obtain

p−1
3∑

k=1

(−1)k+1

(
np− 1

k

)
Hk

=

(
1 +

3

2
npq3

) p−1
3
− (np− 1)

np− 1

(
−p
6
Bp−2

(
1

3

)
− 3

2
q3 +

3

4
pq23 +

1

np− 1

)
+

1

np− 1

≡
(
q3 −

1

3

)
+

{(
3

2
n− 1

2

)
q23 +

n+ 1

2
q3 −

2

3
n+

1

3
+

1

9
Bp−2

(
1

3

)}
p
(
mod p2

)
.

b) The other congruences can be proved similarly as above.

Proof of Theorem 1.5. By the relation (26) we get

p−1∑
k=1

(−1)k+1

(
p− 1

k

)
Hk,2 =

Hp−1

p− 1
,

using the congruence of Remark 5.1 given in [11]

Hp−1 ≡ −
(
B2p−4

2p− 4
− 2

Bp−3

p− 3

)
p2
(
mod p4

)
,

and the congruence
1

p− 1
= −1− p− p2 − p3

(
mod p4

)
, (28)

the proof is complete.
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[6] Koparal, S., & Ömür, N. (2016). Congruences related to central binomial coefficients,
harmonic and Lucas numbers, Turk. J. Math., 40, 973–985.

[7] Lehmer, E. (1938). On congruences involving Bernoulli numbers and the quotients of
Fermat and Wilson, Ann. Math., 39, 350–360.
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