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1 Introduction

The Fibonacci number is generalized by varying recurrence relations, initial conditions or both of
them. The Jacobsthal and Jacobsthal-Lucas numbers are well-known examples of second-order
generalized Fibonacci numbers. In the last few years, many authors have investigated Jacobsthal
and Jacobsthal-Lucas numbers. In [8], Koken and Bozkurt derived fundamental identities and
Binet-like formula for the Jacobsthal and Jacobsthal-Lucas numbers using matrices. Cerin [3]
discovered sums of squares and products of Jacobsthal numbers.

The k-Jacobsthal and k-Jacobsthal-Lucas number is one more example of a generalized
Fibonacci number. In recent years, many authors have studied these numbers. For example,
see [1,6,7,9-14] and the references cited therein.

In the year 1996 A. F. Horadam [5] first studied the Jacobsthal numbers. We reproduce
following Definitions 1.1 and 1.2 from [5].
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Definition 1.1. The Jacobsthal numbers 3, are defined by the recurrence relation
%TH—Z = gn—|—1 + 23717
for n > 0 with the initial conditions Sy = 0 and & = 1.

Definition 1.2. The Jacobsthal-Lucas numbers @,, are given by the recurrence relation

On+2 = Pnt1 + 20n,
for n > 0 with the initial conditions oy = 2 and o1 = 1.

The Binet formula of Jacobsthal and Jacobsthal-Lucas numbers are given by

on = a" + " (M
and
n_ pn
Sy = — )
a—>b

where a = 2 and b = 1 are the roots of the characteristic equation 2% — x — 2 = 0.

Later, in 2015, Uygun and Eldogan, [10, 11, 13, 14] defined k-Jacobsthal and k-Jacobsthal—
Lucas numbers and investigated various properties of these numbers. We rewrite following
Definitions 1.3 and 1.4 from [10].

Definition 1.3. The k-Jacobsthal numbers are given by the recurrence relation
Skmt1 = kSkn + 28k -1,

for n > 2 with the initial conditions Sy o = 0 and 3y, = 1.

Definition 1.4. The k-Jacobsthal-Lucas numbers by the recurrence relation
Okn+1 = kQrn + 20k n—1,

for n > 2 with the initial conditions oo = 2 and @1 = k.

Binet Formula of k-Jacobsthal (3 ,,) and k-Jacobsthal-Lucas (g ,,) numbers are given by

Prn =11 + 13 3)
and
S = BB )
m—"n
where 7, = @ and 7y = %\/m are the roots of the characteristic equation

2 —kr—2=0.
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The characteristic roots 7); and 7); appeared in the Definitions 1.3 and 1.4 satisfy the following

relations
m—n = VEk2+8 =10, (5)
h+mn =k, (6)
hne = —2. (7
ni = km +2 ®)
ny = knz +2 ©)

The k-Jacobsthal and k-Jacobsthal-Lucas numbers are particular examples of Jacobsthal
and Jacobsthal-Lucas numbers, respectively. The Jacobsthal numbers and the Jacobsthal-Lucas
numbers are the origins of many fascinating properties. A complementary interpretation exists
for k-Jacobsthal numbers and kJacobsthal-Lucas numbers. Many authors studied these numbers,
see [1,6,7,9-14] and the references cited therein. Some of these are listed below

Lemma 1.1. Let n,m € Z*. Then

L. Sknt1 +28%n-1 = Ok, (10)
2. Skat1 T 20kn-1 = 0SSk, (11)
3. 28kman = SkmPkn T SknPkm, (12)
4. 2pmen = (= 1)" (Skm®rn — SknPrm), (13)
5. Skn1Skan — S, = — (=27, (14)
6. Prn10knt1 — P, = (=2)"7'6, (15)
7. Skn@kn = Skon, (16)
8. P =081, +4(—2)", (17)
9. Prn = kSkan + 4Skn-1, (18)
10, kShn + Ok = 2Skms1, (19)
11, 0SSk + kpkn = 20k n+1, (20)

We are influenced by the idea of Carlitz and Ferns [2], and motivated by the work of Zhang [15] to
establish different binomial sums of k-Jacobsthal and k-Jacobsthal-Lucas numbers, see also [4].

2 Binomial sums with k-Jacobsthal and k-Jacobsthal-Lucas

numbers

In this section, we establish some more binomial sums for k-Jacobsthal and k-Jacobsthal-Lucas
numbers. The following Lemma 2.1 plays a key role in proving the Theorems 2.2 to 2.4.

Lemma 2.1. Let u = 1, or ny. Then

2(2n+1+1) 4 ku2(2n+1) + u2(2n+1+1) _ pk72n+lu2(2"+l)‘ (21)
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Proof. Let u = 7. Using the Binet formula of ¢y, ,,, we have

2(2"+1) _ (772"+1 4 2"+1)7ﬁ(2"+1)

§k,2n+17T)q 1 U

2n+1 2n+1+2 2n+1 2n+1+2
=™ ™ +1 M

T U (AT

n+1 n+1 n+1
=ni(m T+ (=27)
R 2
% 2n+1)_F 2n2n+2)

= (n
(R
= ( 2(2"t141)

24 knp )2 4o
= (") o o)y 227D
Similarly, we can prove the result for © = 7. [
Theorem 2.1. Let n,t € Z+ witht > 1. Then

IS _ o2+ 2nt ) o
(1) Spprontiyoppann = 20 ISk + k2% Sy i1 + S ppontasa, (22)

(2) Ok t+2nt1 420k ontl = 2(2n+1+1)@k,t + k2(2"+1)m¢+1 + Pk tront249. (23)

Proof. From the Lemma 2.1, we have

2 o 2 gt = Y 24
9(2M+141) | ks (@) n2(2n+1+1) = on 2n+1n2(2"+1) (25)

t
Now, by multiplying Equation (24) by 77 and Equation (25) by = and subtracting, we
2

obtain
n+2 n+2
o(2mF141) (77 772)+k2 (2n+1) (77?1 - 775“) i (77?2 2 77?—2 +2)
m — "2 n—"n2 m — 12
t+2n iy ppontlyo
=gz (M )
’ m — 1o
That is

o~ o 2n+1+1 o~ 2n+1 o~ o
St yanttro@pantt = 2 IS + k2% 11+ Siasontoyga.

Furthermore, by multiplying Equation (24) by ! and Equation (25) by 7% and adding, we obtain
the desired result

antlyg
Pk t+on+1 42§00k ont+1 = 2 ) Okt + 2" @k t+1 T Qktr2n+242. [
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Theorem 2.2. Letn,t € Z+ witht > 1. Then

TTin n j+s T s i
(1) E"Spnp2® ™ = g (@ j) (—1)7Fe2™) O o1 Sk2r 1 (4 25) 4204 j) 46, (26)
i+jts=n '’

n I 1TL n it+s r+1 s i
(2) K prase2® M = Z (z j) (123G Oparri gy (2T)
i+j+s=n ’

Proof. From the Lemma 2.1, we have

k22r+1771 — o 2T+1n%(2r+1) . 22T+1+1 . 77%(2T“+1)
r+1 T r+1 r+1
k22 * ’]72 = pk72r+17]§(2 +1) - 22 " +1 - 7]3(2 +1).

Thanks to the Multinomial Theorem, by applying it, we obtain

no2™tln n n i+s02rtls 4 r+1 i (2rt2 j
R =) (z '>(—1>” 2 gy T, (28)
i+j+s=n »J
na2"tin n n itsa2rtlg 4 r+1 i r+2 .
KT =) (z ‘>(—1)” R e (29)
i+j+s=n +J
t t
Now, multiplying Equation (28) by ; H ; and Equation (29) by ; 77277 and subtracting, we get
1= 12 1= 12

n T 17’L n its r+1 s i
B2 = Z <z j) (-1p 2 O 201 Sk 271 (10220 4+

Furthermore, multiplying Equation (28) by 7} and Equation (29) by 7} and adding, we obtain

n T+l n j+s r+lyg 4
K oras2® W = Y (z j) (=172 Gl i P art 42 2(i40) - N
i+j+s=n ’

Theorem 2.3. Let n,t € Z* witht > 1. Then

n j i+50927 1 (j45)+s i
(1) %k,(2T+2+2)n+t = Z (Z ]) k](_l)]+ 22 (et @k72r+1%k,(2r+1+2)i+j+ta (30)
i+75+s=n ?

n j j " j+s)+s i
(2) @k, r212)mit = Z (Z j) kI (— 1)+ )t O 2r+1 %k, (201 12)i+j - (1)
i+j+s=n ’

Proof. Using the Lemma 2.1, we have

r+41 T T T
Uf@ +1) _ m,2r+lﬁf(2 +1) _ 924l _ g2 +17717
r+1 T r+1 r+1
77%(2 +1) _ pk,2r+177§(2 ) 92+l o2t a.
By employing the multinomial theorem, we obtain
r+1 n n j i+502" L (j48)+s i s i) J
77%(2 +1) _ Z (Z ) k](—1)7+ 22 THj+s)+ pk,27°+177§2 +2) 77{’ (32)
i+jro=n N
r+1 n n 1 +s (5 s)+s, 1 s W)
773(2 +n _ Z (Z J) k,](_1>J+ 22 HG+s)+ pk,2T+177§2 +2) 77%. (33)
itjts=n N
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t
First, by multiplying Equation (32) by — and Equation (33) by and subtracting, we

attain
%k,(2T+2+2)n+t = Z ( ) 1% (_1)j+s22 +1(]+8)+S@2,2r+1%k,(2T+1+2)i+j+t-
L (2N
1+7+s=n
Moreover, multiplying Equation (32) by 1} and Equation (33) by 7} and adding, we obtain
n j j+502" L (j48)+s i
Pk, 2rt242)n+t = Z (z j) R(=1)" ¥ et Prk,2r+1 0k, (271 +2)i+5+t- u
i+j+s=n ’

Theorem 2.4. Let n,t € Z* witht > 1. Then

n ol g ts
(1) %k,(2r+1+2)n+t@2,2r+1 = Z (z ) k792 TL(j4s)+ %k,(2r+2+2)z‘+j+t7 (34)
i+j+s=n ’
n n - r+1(,; s s
(2)  Pr,@r 4t Ppor = Z (z j) fI22 " et Ok, (242 42)i )+t (35)

i+j+s=n
Proof. From the Lemma 2.1, we have

Ok, 2*“771( T g2 I<:22T+1 M+ 2271 41)

)

prarnp’ T =22 g9y, @Y,

By using the multinomial theorem, we get

T n n n . PR s s r+1 i g
T e =Y (Z ) P AN (36)
i+j+s=n »J
r n n n 02"t (4 g)+s 41 i
7]3(2 +1) Pporit = Z (l ]> Ei92 T (j+s)+ 7]3(2 +1) 77%' (37)
i+j+s=n ’

t
Now, by multiplying Equation (36) by e and Equation (37) by » and subtracting, we
2
obtain

n n . r+1(, s s
Sk, 2+ 4 2)n ek or+1 = Z (2 ) J792 T )+ Sk (2r+242)ij 4+t
i+j+s=n »J
Again, multiplying Equation (36) by 7¢ and Equation (37) by 1} and adding, we achieve
n n - r4+1(, s s
Ok, (2r+142)n+t 0 or+1 = Z (z j) k72° Tt Pk, (27+242)i+j+t- [
i+j+s=n !

The following Lemmas 2.2 and 2.3 play a significant role in proving the Theorems 2.5 and 2.6.

Lemma 2.2. Lett € Z*t witht > 1. Then prove that

(1) it = iy, 5oL, (38)
C\/
(2) = -5 — 22 (39)
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Proof. Let us consider

S 2t oo 1 mHt—nd ny !

25— o2t (T )y o
mVo p = R mm =) =2

_ L ot _gp2t=l g2t

i
_n (i - 2)
k
o km+2-2)
- k

9t
=T

This completes the proof of (1).
The proof of result (2) is similar to the result (1), hence we omit the proof.

Lemma 2.3. Lett € Z" witht > 1. Then show that

C\4
(1) it = Bty g 2R,

C\
(2) ngt—i-l _ @k,ztﬂ ns + 2\91;215 \/5

Proof. Consider

+ 5

k

)

Ok2t+1 Sk,2 LI o1 | o1 ny' —ng'
Photel ) oSk f5 (IR (g, -
/) B Vo k{(m +mp " )m (771—772)(771 )
1
= 7 (" = 205" — 20" + 2m')
1 2t+2 ) 2t
=% (771 Ua )
2t
n
(-
2t
UA
=2 (k 2—-2
L ( m+ )
— n%t+1.

Thus the result (1).
The proof of (2) is analogous to (1), thus we omit the proof.

Theorem 2.5. Lett € Z+ witht > 1. Then

(1) ESkstor + 2082-1Sk,s = Sk2t9k,5+1,

(2)  kprstor + 20k20-10ks = 08%.2e k5415

(3)  kSksrorrt = P21 kst — 23k 20k V0,
(4)  kpkstort1 = ©k2t+1 90k 511 — 208k,2t S s
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Proof. From the Lemma 2.2, we have

ans _ \5k2t 3+1\/— @kzt 1 f, (46)
s \Yk:, s m, -1
e = _T%%*VS 92 ]if LS. (47)

By multiplying Equation (46) by ; ! ; and Equation (47) by ; ! and subtracting, we obtain
1 =12 1 =12

ESSk,st2t + 20k,2t-1S8ks = Sk,2t 0k, 541
Lastly, adding the Equations (46) and (47), we get

_ SCx O
kor s+ot + 20k20-19k,s = 085,26 Sk 541

By applying the Lemma 2.3, we have

C\

n%tJrerl @k,ztﬂmgﬂ _ 2\/3\91;2tnig’ (48)
3

et = PR 95y (49)

Now, by multiplying Equation (48) by ; ! ; and Equation (49) by . !
1 =172 1

and subtracting, we
— 72

obtain
k%k,s+2t+1 = @k,2t+1%k,s+1 — 2§k,2t@k,s\/5-
Furthermore, adding the Equations (48) and (49), we get
kE@r siot41 = k204100541 — 25%k,2t%k,s- [

Theorem 2.6. Let n,s,t € Z* witht > 1. Then

—ngyn  SE o o i ; .
ST 502 Sk nts,  If nis an even integer,

n k
(1) Z (Z)k(z n)2n Z@( bt )1\5k oUits = . ’ o

i=0 TN 02 Pknts, If 1 is an odd integer,

" /n - k™" 2002 Ok nts if n is an even integer;
(2) E 2 @k 2t— 19k 2ti4+s = 1
i=0 ET"SE 5072 Sknts, ifnis an odd integer,

3

0, if n is an even integer;

)

(—2)n+1(k)*”§272t5(%), if n is an odd integer,

3

n
k? @k 26+18k,2t(n—i)+n =

(0)s
(3) (n) )k Ok 21 Skattn—iybn =
(£)

i=0 0, when n is an odd integer.

{(2)"+1(k) "7 4,02, when n is an even integer;
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Proof. Applying the Lemma 2.2, we have

C\4
m'+ 2%}2;_1 = =G,

C\4
o+ ZM’Z_I = —\SZ% V3.

Thanks to the binomial theorem. By using it, we obtain

- n i—non—i_(n—i i —nown 2 n
Z (Z)k 2 @i(g,%—)l(ﬁ%t) = kTSR0 (50)

1=0

< n i—non—i _(n—t i n1.—Ncxn n
Z (Z)k 2 Pi(c,2t31(77§t) = (—=1)"k" %th(SQnQ' (51

1=0

Now, by multiplying Equation (50) by

s and Equation (51) by and subtracting, we

n 2ti+s 2ti+s
1— n n—1i n— 7] ,r]
Z(z)k( 2 @(,%—)1( : 2 )

— 12
obtain

i=0 T — 12
nn—i—s _ nn—i—s
kST 0% (F——2—),  if nis an even integer;
= =12

kS0 (gt s te), if s an odd integer,

which implies

- (n—i) o k-
Z ( )k(Z 2 Zpk 2— 1\9k 2tits =
U k—n

1=0

|3

%Z 02k nts, if n is an even integer;
20 2 ©rnts, 1if nisan odd integer,

This completes the proof of (1).
Again, by multiplying Equation (50) by 1] and Equation (51) by 75 and adding, we get

- n i—m)on—i, _(N—1 i+s i+s
Z(Z)k( )9 pI(ﬂt)l(?ﬁw +n§t+)

i=0
f—ngn (5 ( n+s n+s if ni : .
ro02 (it + i), if nis an even integer;
- +1 nn+s Tln+s
k37,0 (——2—), ifnis an odd integer,
’ m — 12
which gives
" /n ()i _(n—i) kST 002 Pknis,  if 7 is an even integer;
Z ; k 2" ) o1 Pk 2ties = -
i=0 k~ ”SZQ 02 Sppts, if misan odd integer,
Thus the result (2).

From the Lemma 2.3, we have

C\‘
241 Ok2t+1 Sk, 2t
+1 T = ) \/_

1 kf 1
&
n§t+1 . pk,zt—i—lrh _9 k2t \/S
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Applying the binomial theorem, we obtain

— (n ip—i i 2(n—i)+n o —memean oD
5 ()0 () = (1S 0, 52)
i=0
- n i1.—1, 1 n—i)+n —noncsn 2
Z (Z)(_l) k @k,2t+1<77§t( " ) = kT"2"S 002 (53)
i=0
By multiplying Equation (52) by ; L ; and Equation (53) by . L ; and subtracting, we obtain
1 =12 1 =12
" /n o 0, if n is an even integer;
Z (Z) (—1)'k Zp;c72t+1%k,2t(n—i)+n = -
i=0 (—2)”+l(k)‘”%g2té(7), if n is an odd integer,
Thus the proof of (3).

Finally, by adding equations (52) and (53), we get

“~ (n i7.—i
Z (z) (—1)'k Ok 26418k 2t(n—i)+n =

=0

(2)n+t (k)*”%Z’Qt(ﬁ, when n is an even integer;
0, when 7 is an odd integer.

Hence the result (4). [l

3 Conclusions

In this paper, we established a few crucial identities consisting of k-Jacobsthal and k-Jacobsthal-Lucas
numbers. In addition, we obtained different binomial sums of k-Jacobsthal and k-Jacobsthal-Lucas
numbers by using multinomial theorem. These results are original and the idea of the proof is
inventive and distinct.
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