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1 Introduction

The Fibonacci number is generalized by varying recurrence relations, initial conditions or both of
them. The Jacobsthal and Jacobsthal–Lucas numbers are well-known examples of second-order
generalized Fibonacci numbers. In the last few years, many authors have investigated Jacobsthal
and Jacobsthal–Lucas numbers. In [8], Köken and Bozkurt derived fundamental identities and
Binet-like formula for the Jacobsthal and Jacobsthal–Lucas numbers using matrices. Čerin [3]
discovered sums of squares and products of Jacobsthal numbers.

The k-Jacobsthal and k-Jacobsthal–Lucas number is one more example of a generalized
Fibonacci number. In recent years, many authors have studied these numbers. For example,
see [1, 6, 7, 9–14] and the references cited therein.

In the year 1996 A. F. Horadam [5] first studied the Jacobsthal numbers. We reproduce
following Definitions 1.1 and 1.2 from [5].
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Definition 1.1. The Jacobsthal numbers =n are defined by the recurrence relation

=n+2 = =n+1 + 2=n,

for n ≥ 0 with the initial conditions =0 = 0 and =1 = 1.

Definition 1.2. The Jacobsthal–Lucas numbers ℘n are given by the recurrence relation

℘n+2 = ℘n+1 + 2℘n,

for n ≥ 0 with the initial conditions ℘0 = 2 and ℘1 = 1.

The Binet formula of Jacobsthal and Jacobsthal–Lucas numbers are given by

℘n = an + bn (1)

and

=n =
an − bn

a− b
, (2)

where a = 2 and b = 1 are the roots of the characteristic equation x2 − x− 2 = 0.
Later, in 2015, Uygun and Eldogan, [10, 11, 13, 14] defined k-Jacobsthal and k-Jacobsthal–

Lucas numbers and investigated various properties of these numbers. We rewrite following
Definitions 1.3 and 1.4 from [10].

Definition 1.3. The k-Jacobsthal numbers are given by the recurrence relation

=k,n+1 = k=k,n + 2=k,n−1,

for n ≥ 2 with the initial conditions =k,0 = 0 and =k,1 = 1.

Definition 1.4. The k-Jacobsthal–Lucas numbers by the recurrence relation

℘k,n+1 = k℘k,n + 2℘k,n−1,

for n ≥ 2 with the initial conditions ℘k,0 = 2 and ℘k,1 = k.

Binet Formula of k-Jacobsthal (=k,n) and k-Jacobsthal–Lucas (℘k,n) numbers are given by

℘k,n = ηn1 + ηn2 (3)

and

=k,n =
ηn1 − ηn2
η1 − η2

, (4)

where η1 =
k +
√
k2 + 8

2
and η2 =

k −
√
k2 + 8

2
are the roots of the characteristic equation

x2 − kx− 2 = 0.
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The characteristic roots η1 and η1 appeared in the Definitions 1.3 and 1.4 satisfy the following
relations

η1 − η2 =
√
k2 + 8 =

√
δ, (5)

η1 + η2 = k, (6)

η1η2 = −2. (7)

η21 = kη1 + 2 (8)

η22 = kη2 + 2 (9)

The k-Jacobsthal and k-Jacobsthal–Lucas numbers are particular examples of Jacobsthal
and Jacobsthal–Lucas numbers, respectively. The Jacobsthal numbers and the Jacobsthal–Lucas
numbers are the origins of many fascinating properties. A complementary interpretation exists
for k-Jacobsthal numbers and kJacobsthal–Lucas numbers. Many authors studied these numbers,
see [1, 6, 7, 9–14] and the references cited therein. Some of these are listed below

Lemma 1.1. Let n,m ∈ Z+. Then

1. =k,n+1 + 2=k,n−1 = ℘k,n, (10)

2. =k,n+1 + 2℘k,n−1 = δ=k,n, (11)

3. 2=k,m+n = =k,m℘k,n + =k,n℘k,m, (12)

4. 2=k,m−n =
(
− 1
)n(=k,m℘k,n −=k,n℘k,m

)
, (13)

5. =k,n−1=k,n+1 −=2
k,n = −(−2)n−1, (14)

6. ℘k,n−1℘k,n+1 − ℘2
k,n = (−2)n−1δ, (15)

7. =k,n℘k,n = =k,2n, (16)

8. ℘2
k,n = δ=2

k,n + 4(−2)n, (17)

9. ℘k,n = k=k,2n + 4=k,n−1, (18)

10. k=k,n + ℘k,n = 2=k,n+1, (19)

11. δ=k,n + k℘k,n = 2℘k,n+1, (20)

We are influenced by the idea of Carlitz and Ferns [2], and motivated by the work of Zhang [15] to
establish different binomial sums of k-Jacobsthal and k-Jacobsthal–Lucas numbers, see also [4].

2 Binomial sums with k-Jacobsthal and k-Jacobsthal–Lucas
numbers

In this section, we establish some more binomial sums for k -Jacobsthal and k -Jacobsthal–Lucas
numbers. The following Lemma 2.1 plays a key role in proving the Theorems 2.2 to 2.4.

Lemma 2.1. Let u = η1 or η2. Then

2(2
n+1+1) + ku2(2

n+1) + u2(2
n+1+1) = ℘k,2n+1u2(2

n+1). (21)
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Proof. Let u = η1. Using the Binet formula of ℘k,n, we have

℘k,2n+1η
2(2n+1)
1 =

(
η2

n+1

1 + η2
n+1

2

)
η
2(2n+1)
1

= η2
n+1

1 η2
n+1+2

1 + η2
n+1

2 η2
n+1+2

1

=
(
η2

n+1

1 η2
n+1

1

)
η21 +

(
η2

n+1

2 η2
n+1

1

)
η21

= η21
(
η2

n+1+2n+1

1 + (−2)2n+1)
= η21

(
η2

n+2

1 + 2(2
n+1)
)

=
(
η212

(2n+1) + η21η
2n+2

1

)
=
(
η212

(2n+1) + η2+2n+2

1

)
= (2 + kη1)2

(2n+1) + η
2(2n+1+1)
1

= 2(2
n+1+1) + kη12

(2n+1) + η
2(2n+1+1)
1

Similarly, we can prove the result for u = η2.

Theorem 2.1. Let n, t ∈ Z+ with t ≥ 1. Then

(1) =k,t+2n+1+2℘k,2n+1 = 2(2
n+1+1)=k,t + k2(2

n+1)=k,t+1 + =k,t+2n+2+2, (22)

(2) ℘k,t+2n+1+2℘k,2n+1 = 2(2
n+1+1)℘k,t + k2(2

n+1)℘k,t+1 + ℘k,t+2n+2+2. (23)

Proof. From the Lemma 2.1, we have

2(2
n+1+1) + kη12

(2n+1) + η
2(2n+1+1)
1 = ℘k,2n+1η

2(2n+1)
1 (24)

2(2
n+1+1) + kη22

(2n+1) + η
2(2n+1+1)
2 = ℘k,2n+1η

2(2n+1)
2 . (25)

Now, by multiplying Equation (24) by ηt1
η1 − η2

and Equation (25) by ηt2
η1 − η2

and subtracting, we
obtain

2(2
n+1+1)

(ηt1 − ηt2
η1 − η2

)
+k2(2

n+1)
(ηt+1

1 − ηt+1
2

η1 − η2
)
+
(ηt+2n+2+2

1 − ηt+2n+2+2
2

η1 − η2
)

=℘k,2n+1

(ηt+2n+1+2
1 − ηt+2n+1+2

2

η1 − η2
)

That is

=k,t+2n+1+2℘k,2n+1 = 2(2
n+1+1)=k,t + k2(2

n+1)=k,t+1 + =k,t+2n+2+2.

Furthermore, by multiplying Equation (24) by ηt1 and Equation (25) by ηt2 and adding, we obtain
the desired result

℘k,t+2n+1+2℘k,2n+1 = 2(2
n+1+1)℘k,t + k2(2

n+1)℘k,t+1 + ℘k,t+2n+2+2.
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Theorem 2.2. Let n, t ∈ Z+ with t ≥ 1. Then

(1) kn=k,n+t2
(2r+1n) =

∑
i+j+s=n

(
n

i, j

)
(−1)j+s2(2

r+1)s℘i
k,2r+1=k,2r+1(i+2j)+2(i+j)+t, (26)

(2) kn℘k,n+t2
(2r+1n) =

∑
i+j+s=n

(
n

i, j

)
(−1)j+s2(2

r+1)s℘i
k,2r+1℘k,2r+1(i+2j)+2(i+j)+t. (27)

Proof. From the Lemma 2.1, we have

k22
r+1

η1 = ℘k,2r+1η
2(2r+1)
1 − 22

r+1+1 − η2(2
r+1+1)

1 ,

k22
r+1

η2 = ℘k,2r+1η
2(2r+1)
2 − 22

r+1+1 − η2(2
r+1+1)

2 .

Thanks to the Multinomial Theorem, by applying it, we obtain

kn22
r+1nηn1 =

∑
i+j+s=n

(
n

i, j

)
(−1)j+s22

r+1s℘i
k,2r+1η

(2r+1+2)i
1 η

(2r+2+2)j
1 , (28)

kn22
r+1nηn2 =

∑
i+j+s=n

(
n

i, j

)
(−1)j+s22

r+1s℘i
k,2r+1η

(2r+1+2)i
2 η

(2r+2+2)j
2 . (29)

Now, multiplying Equation (28) by ηt1
η1 − η2

and Equation (29) by ηt2
η1 − η2

and subtracting, we get

kn=k,n+t2
(2r+1n) =

∑
i+j+s=n

(
n

i, j

)
(−1)j+s2(2

r+1)s℘i
k,2r+1=k,2r+1(i+2j)+2(i+j)+t.

Furthermore, multiplying Equation (28) by ηt1 and Equation (29) by ηt2 and adding, we obtain

kn℘k,n+t2
(2r+1n) =

∑
i+j+s=n

(
n

i, j

)
(−1)j+s2(2

r+1)s℘i
k,2r+1℘k,2r+1(i+2j)+2(i+j)+t.

Theorem 2.3. Let n, t ∈ Z+ with t ≥ 1. Then

(1) =k,(2r+2+2)n+t =
∑

i+j+s=n

(
n

i, j

)
kj(−1)j+s22

r+1(j+s)+s℘i
k,2r+1=k,(2r+1+2)i+j+t, (30)

(2) ℘k,(2r+2+2)n+t =
∑

i+j+s=n

(
n

i, j

)
kj(−1)j+s22

r+1(j+s)+s℘i
k,2r+1℘k,(2r+1+2)i+j+t. (31)

Proof. Using the Lemma 2.1, we have

η
2(2r+1+1)
1 = ℘k,2r+1η

2(2r+1)
1 − 22

r+1+1 − k22r+1

η1,

η
2(2r+1+1)
1 = ℘k,2r+1η

2(2r+1)
2 − 22

r+1+1 − k22r+1

η2.

By employing the multinomial theorem, we obtain

η
2(2r+1+1)n
1 =

∑
i+j+s=n

(
n

i, j

)
kj(−1)j+s22

r+1(j+s)+s℘i
k,2r+1η

(2r+1+2)i
1 ηj1, (32)

η
2(2r+1+1)n
2 =

∑
i+j+s=n

(
n

i, j

)
kj(−1)j+s22

r+1(j+s)+s℘i
k,2r+1η

(2r+1+2)i
2 ηj2. (33)
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First, by multiplying Equation (32) by ηt1
η1 − η2

and Equation (33) by ηt2
η1 − η2

and subtracting, we
attain

=k,(2r+2+2)n+t =
∑

i+j+s=n

(
n

i, j

)
kj(−1)j+s22

r+1(j+s)+s℘i
k,2r+1=k,(2r+1+2)i+j+t.

Moreover, multiplying Equation (32) by ηt1 and Equation (33) by ηt2 and adding, we obtain

℘k,(2r+2+2)n+t =
∑

i+j+s=n

(
n

i, j

)
kj(−1)j+s22

r+1(j+s)+s℘i
k,2r+1℘k,(2r+1+2)i+j+t.

Theorem 2.4. Let n, t ∈ Z+ with t ≥ 1. Then

(1) =k,(2r+1+2)n+t℘
n
k,2r+1 =

∑
i+j+s=n

(
n

i, j

)
kj22

r+1(j+s)+s=k,(2r+2+2)i+j+t, (34)

(2) ℘k,(2r+1+2)n+t℘
n
k,2r+1 =

∑
i+j+s=n

(
n

i, j

)
kj22

r+1(j+s)+s℘k,(2r+2+2)i+j+t. (35)

Proof. From the Lemma 2.1, we have

℘k,2r+1η
2(2r+1)
1 =22

r+1+1 + k22
r+1

η1 + η
2(2r+1+1)
1 ,

℘k,2r+1η
2(2r+1)
2 =22

r+1+1 + k22
r+1

η2 + η
2(2r+1+1)
2 .

By using the multinomial theorem, we get

η
2(2r+1)n
1 ℘n

k,2r+1 =
∑

i+j+s=n

(
n

i, j

)
kj22

r+1(j+s)+sη
2(2r+1+1)i
1 ηj1, (36)

η
2(2r+1)n
2 ℘n

k,2r+1 =
∑

i+j+s=n

(
n

i, j

)
kj22

r+1(j+s)+sη
2(2r+1+1)i
2 ηj2. (37)

Now, by multiplying Equation (36) by ηt1
η1 − η2

and Equation (37) by ηt2
η1 − η2

and subtracting, we
obtain

=k,(2r+1+2)n+t℘
n
k,2r+1 =

∑
i+j+s=n

(
n

i, j

)
kj22

r+1(j+s)+s=k,(2r+2+2)i+j+t.

Again, multiplying Equation (36) by ηt1 and Equation (37) by ηt2 and adding, we achieve

℘k,(2r+1+2)n+t℘
n
k,2r+1 =

∑
i+j+s=n

(
n

i, j

)
kj22

r+1(j+s)+s℘k,(2r+2+2)i+j+t.

The following Lemmas 2.2 and 2.3 play a significant role in proving the Theorems 2.5 and 2.6.

Lemma 2.2. Let t ∈ Z+ with t ≥ 1. Then prove that

(1) η2t1 =
=k,2t

k
η1
√
δ − 2

℘k,2t−1

k
, (38)

(2) η2t2 = −=k,2t

k
η2
√
δ − 2

℘k,2t−1

k
. (39)
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Proof. Let us consider

=k,2t

k
η1
√
δ − 2

℘k,2t−1

k
=

1

k

(η2t1 − η2t2
η1 − η2

)
η1(η1 − η2)− 2

(η2t−1
1 + η2t−1

2

k

)
=
η2t+1
1 + 2η2t−1

2 − 2η2t−1
1 − 2η2t−1

2

k

=
η2t−1
1 (η21 − 2)

k

=
η2t−1
1 (kη1 + 2− 2)

k

= η2t1

This completes the proof of (1).
The proof of result (2) is similar to the result (1), hence we omit the proof.

Lemma 2.3. Let t ∈ Z+ with t ≥ 1. Then show that

(1) η2t+1
1 =

℘k,2t+1

k
η1 − 2

=k,2t

k

√
δ, (40)

(2) η2t+1
2 =

℘k,2t+1

k
η2 + 2

=k,2t

k

√
δ. (41)

Proof. Consider

℘k,2t+1

k
η1 − 2

=k,2t

k

√
δ =

1

k

{
(η2t+1

1 + η2t+1
2 )η1 − 2

(η2t1 − η2t2
η1 − η2

)
(η1 − η2)

}
=

1

k

(
η2t+2
1 − 2η2t2 − 2η2t1 + 2η2t2

)
=

1

k

(
η2t+2
1 − 2η2t1

)
=
η2t1
k

(
η21 − 2

)
=
η2t1
k

(
kη1 + 2− 2

)
= η2t+1

1 .

Thus the result (1).
The proof of (2) is analogous to (1), thus we omit the proof.

Theorem 2.5. Let t ∈ Z+ with t ≥ 1. Then

(1) k=k,s+2t + 2℘k,2t−1=k,s = =k,2t℘k,s+1, (42)

(2) k℘k,s+2t + 2℘k,2t−1℘k,s = δ=k,2t=k,s+1, (43)

(3) k=k,s+2t+1 = ℘k,2t+1=k,s+1 − 2=k,2t℘k,s

√
δ, (44)

(4) k℘k,s+2t+1 = ℘k,2t+1℘k,s+1 − 2δ=k,2t=k,s. (45)
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Proof. From the Lemma 2.2, we have

η2t+s
1 =

=k,2t

k
ηs+1
1

√
δ − 2

℘k,2t−1

k
ηs1, (46)

η2t+s
2 = −=k,2t

k
ηs+1
2

√
δ − 2

℘k,2t−1

k
ηs2. (47)

By multiplying Equation (46) by 1

η1 − η2
and Equation (47) by 1

η1 − η2
and subtracting, we obtain

k=k,s+2t + 2℘k,2t−1=k,s = =k,2t℘k,s+1.

Lastly, adding the Equations (46) and (47), we get

k℘k,s+2t + 2℘k,2t−1℘k,s = δ=k,2t=k,s+1.

By applying the Lemma 2.3, we have

η2t+s+1
1 =

℘k,2t+1

k
ηs+1
1 − 2

√
δ
=k,2t

k
ηs1, (48)

η2t+s+1
2 =

℘k,2t+1

k
ηs+1
2 + 2

√
δ
=k,2t

k
ηs2 (49)

Now, by multiplying Equation (48) by 1

η1 − η2
and Equation (49) by 1

η1 − η2
and subtracting, we

obtain

k=k,s+2t+1 = ℘k,2t+1=k,s+1 − 2=k,2t℘k,s

√
δ.

Furthermore, adding the Equations (48) and (49), we get

k℘k,s+2t+1 = ℘k,2t+1℘k,s+1 − 2δ=k,2t=k,s.

Theorem 2.6. Let n, s, t ∈ Z+ with t ≥ 1. Then

(1)
n∑

i=0

(
n

i

)
k(i−n)2n−i℘

(n−i)
k,2t−1=k,2ti+s =

k
−n=n

k,2tδ
n
2=k,n+s, if n is an even integer;

k−n=n
k,2tδ

n−1
2 ℘k,n+s, if n is an odd integer,

(2)
n∑

i=0

(
n

i

)
k(i−n)2n−i℘

(n−i)
k,2t−1℘k,2ti+s =

k
−n=n

k,2tδ
n
2℘k,n+s, if n is an even integer;

k−n=n
k,2tδ

n+1
2 =k,n+s, if n is an odd integer,

(3)
n∑

i=0

(
n

i

)
(−1)ik−i℘i

k,2t+1=k,2t(n−i)+n =

0, if n is an even integer;

(−2)n+1(k)−n=n
k,2tδ

(n−1
2

), if n is an odd integer,

(4)
n∑

i=0

(
n

i

)
(−1)ik−i℘i

k,2t+1℘k,2t(n−i)+n =

(2)n+1(k)−n=n
k,2tδ

n
2 , when n is an even integer;

0, when n is an odd integer.
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Proof. Applying the Lemma 2.2, we have

η2t1 + 2
℘k,2t−1

k
=
=k,2t

k
η1
√
δ,

η2t2 + 2
℘k,2t−1

k
= −=k,2t

k
η2
√
δ.

Thanks to the binomial theorem. By using it, we obtain
n∑

i=0

(
n

i

)
ki−n2n−i℘

(n−i)
k,2t−1(η

2ti
1 ) = k−n=n

k,2tδ
n
2 ηn1 , (50)

n∑
i=0

(
n

i

)
ki−n2n−i℘

(n−i)
k,2t−1(η

2ti
2 ) = (−1)nk−n=n

k,2tδ
n
2 ηn2 . (51)

Now, by multiplying Equation (50) by ηs1
η1 − η2

and Equation (51) by ηs2
η1 − η2

and subtracting, we
obtain

n∑
i=0

(
n

i

)
k(i−n)2n−i℘

(n−i)
k,2t−1

(
η2ti+s
1 − η2ti+s

2

η1 − η2

)

=

k
−n=n

k,2tδ
n
2

(ηn+s
1 − ηn+s

2

η1 − η2
)
, if n is an even integer;

k−n=n
k,2tδ

n−1
2

(
ηn+s
1 + ηn+s

2

)
, if n is an odd integer,

which implies

n∑
i=0

(
n

i

)
k(i−n)2n−i℘

(n−i)
k,2t−1=k,2ti+s =

k
−n=n

k,2tδ
n
2=k,n+s, if n is an even integer;

k−n=n
k,2tδ

n−1
2 ℘k,n+s, if n is an odd integer,

This completes the proof of (1).
Again, by multiplying Equation (50) by ηs1 and Equation (51) by ηs2 and adding, we get

n∑
i=0

(
n

i

)
k(i−n)2n−i℘

(n−i)
k,2t−1

(
η2ti+s
1 + η2ti+s

2

)

=


k−n=n

k,2tδ
n
2

(
ηn+s
1 + ηn+s

2

)
, if n is an even integer;

k−n=n
k,2tδ

n+1
2

(ηn+s
1 − ηn+s

2

η1 − η2
)
, if n is an odd integer,

which gives

n∑
i=0

(
n

i

)
k(i−n)2n−i℘

(n−i)
k,2t−1℘k,2ti+s =

k
−n=n

k,2tδ
n
2℘k,n+s, if n is an even integer;

k−n=n
k,2tδ

n+1
2 =k,n+s, if n is an odd integer,

Thus the result (2).
From the Lemma 2.3, we have

η2t+1
1 − ℘k,2t+1

k
η1 = −2

=k,2t

k

√
δ,

η2t+1
2 − ℘k,2t+1

k
η2 = 2

=k,2t

k

√
δ.
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Applying the binomial theorem, we obtain
n∑

i=0

(
n

i

)
(−1)ik−i℘i

k,2t+1(η
2t(n−i)+n
1 ) = (−1)nk−n2n=n

k,2tδ
n
2 , (52)

n∑
i=0

(
n

i

)
(−1)ik−i℘i

k,2t+1(η
2t(n−i)+n
2 ) = k−n2n=n

k,2tδ
n
2 . (53)

By multiplying Equation (52) by 1

η1 − η2
and Equation (53) by 1

η1 − η2
and subtracting, we obtain

n∑
i=0

(
n

i

)
(−1)ik−i℘i

k,2t+1=k,2t(n−i)+n =

0, if n is an even integer;

(−2)n+1(k)−n=n
k,2tδ

(n−1
2

), if n is an odd integer,

Thus the proof of (3).
Finally, by adding equations (52) and (53), we get

n∑
i=0

(
n

i

)
(−1)ik−i℘i

k,2t+1℘k,2t(n−i)+n =

(2)n+1(k)−n=n
k,2tδ

n
2 , when n is an even integer;

0, when n is an odd integer.

Hence the result (4).

3 Conclusions

In this paper, we established a few crucial identities consisting of k-Jacobsthal and k-Jacobsthal–Lucas
numbers. In addition, we obtained different binomial sums of k-Jacobsthal and k-Jacobsthal–Lucas
numbers by using multinomial theorem. These results are original and the idea of the proof is
inventive and distinct.
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